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Abstract

The number of patients that physicians care for depends on how many new ad-

missions arrive during the shifts that they work. Therefore the workloads of the

physicians depend on their roster and the distribution of patients among physicians

can be improved by changing the roster. This paper discusses a method for creating

a roster that balances the workloads of the physicians given a number of scenarios

of patient admissions, and evaluates the value of such an approach.
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1 Introduction

In hospitals the rostering of physicians is a continuous concern, particularly in de-

partments that are staffed 24/7. Constructing rosters manually can be very time

consuming since the rules around physicians shifts and work hours are often complex

and dictated by collective agreements or unions. To avoid creating rosters by hand,

mathematical programs (usually mixed inter programs (MIPs)) can be formulated

using the rules for the roster as constraints which automatically generate rosters.

In a health care setting it is common for these MIPs to use soft constraints as the

objective function (Beaulieu et al. 2000; Ferrand et al. 2011; Bard, Shu, and Leykum

2014; Santos et al. 2014). Soft constraints is the term used when the deviation from

a constraint is used in the objective function rather than including the constraint

itself. They are frequently used when including all of the constraints makes the

problem infeasible, or in this context when there is no roster that can conform to

all of the rules.

In situations where all of the rules can be met it is not necessarily obvious what

the objective should be when creating a roster. In this work we assess the quality of a

roster by determining its effect on the number of patients each physician in the roster

is responsible for, otherwise known as their workload. We focus on the physicians’

workloads because the General Medicine (GM) departments in the hospitals in the



Waitemata District Health Board (WDHB) have identified balancing the workloads

of their physicians as a priority.

The concern of the GM departments stems from the concept of continuity of

care. Continuity of care refers to a patient having a continuous relationship with

their health care provider, in this case a physician. Fragmentation of care occurs

when a patient is transferred from one physician to another, this has been shown

to impact both patient satisfaction and length of stay (Hjortdahl and Laerum 1992;

Epstein et al. 2010). Some fragmentation is unavoidable if a patient needs to be seen

by one specialist and then another, however fragmentation can also occur when one

physician is caring for many more patients than another and transfers some of their

patients to the other physician. It is this fragmentation that the GM departments

believe can be reduced by balancing the physicians’ workloads. In particular they

are interested in minimising the largest difference in workloads between any two

physicians at any point in time.

The workloads of the physicians depend on when they work admitting shifts and

how many patients arrive during their admitting shifts. An admitting shift is one

during which the physician who is working it admits new patients to a ward, and the

patient becomes part of the physician’s workload. Not all shifts that the physicians

work are responsible for admitting new patients. The physicians’ workloads can

therefore be influenced by changing their roster, and a roster that minimises the

largest difference in workloads can be found if the following are known: the rules

that the roster must adhere to; the number of patients admitted and discharged

each day; and a mapping between the shifts and the physicians workloads (i.e.

which shifts are admitting shifts).

The above approach will produce a roster that is optimal for the admissions data

it is given, however it may not be optimal (or even close it it) if the admissions were

different. One way of taking the uncertainty of patient admissions into account is

by considering different scenarios for admissions, where each scenario has a different

number of patients arriving on each day. An example of the cumulative number of

patients in GM for 20 scenarios (light gray) generated from a single year of historical

data (black) is given in Figure 1.

The construction of such scenarios is not the focus of this work. Instead we

address finding a roster that minimises the difference in workload, given a set of

scenarios.

2 Method

The problem is modelled as a two-stage stochastic program, the generic form of

which is given below: The first stage contains the decision variables that determine

the roster and the constraints that the roster must obey. In the second stage the

roster is evaluated on each of the patient admission scenarios and the workloads of

the physicians are calculated to find the maximum difference.

The background, formulation and a method for solving the single scenario version

of this problem are the subject of (Adams et al. 2017), and a manuscript currently

in revision for Operations Research in Health Care.

Given a single scenario of patient admissions the objective of the model is to

minimise the largest difference in workloads at any point in the planning horizon.

When more than one scenario is considered we can instead minimise the expected
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Figure 1: Cumulative Patients from Historical Data and 20 Generated Scenarios

value of the largest difference in workloads across the scenarios. If however the

hospital is more worried about the worst scenarios a measure called conditional value

at risk (CVaR) can be used. Given a distribution of values, CVaR at the β level

is the expected value of the worst β% of the values. Therefore we can instead find

the roster that minimises the expected value of the largest difference in workloads

in the worst β% of scenarios.

To solve the two-stage stochastic program with a given number of scenarios a

Benders decomposition is used within a branch-and-cut framework. In the benders

decomposition the master problem is the first stage problem of finding a roster that

conforms to the rules (and satisfies any Benders cuts that have been added already).

The sub-problems are evaluating the roster on each of the scenarios and calculating

the maximum difference in workloads. A single branch-and-bound tree is maintained

for the master problem, and when an integer solution is found at a node it is used

to generate benders cuts via the sub-problems.

2.1 The Sample Average Approximation Method

The sample average approximation (SAA) method works by solving a reduced ver-

sion of the stochastic optimisation problem repeatedly. The problem is reduced by

only considering a sample of the scenarios, rather than all of them at once.

First M samples, each with N scenarios, are generated. Each sample is used to

construct a two-stage stochastic optimisation problem that has all of the first stage

variables and constraints of the actual problem, but only considers the scenarios in

M for the second stage. By solving these M problems we obtain M objective values

and candidate solutions. The mean of these objective values provides a statistical

estimate of a lower bound on the actual optimal objective function value (Mak,

Morton, and Wood 1999; Norkin, Pflug, and Ruszczyski 1998).

The objective function value of the M solutions is evaluated for an independent



sample N ′, which can be larger than N as we do not have to solve a problem with N ′

scenarios. The solution with the best objective value is then evaluated on another

independent sample of size N ′ to estimate the upper bound.

An estimate of the optimality gap, and its variance, can then be formed (Kley-

wegt, Shapiro, and Homem-de Mello 2002). If the gap (or its variance) are above the

desired threshold the process is restarted and at least one of M,N,N ′ is increased.

For the purposes of this paper M remained constant at 10, N was increased from

5 to 75 in multiples of 5, and N ′ was set to 5N . In addition 95% confidence of a

1% optimality gap was used as the threshold. This means that when the algorithm

terminates we have found a solution that we are 95% sure is within 1% of the opti-

mal solution, or have reached the limiting sample size of 75. This means during the

SAA algorithm a maximum of 1500 scenarios could be used.

3 Results

This section compares the performance of four rosters. The first roster labeled

‘Proposed’ is a roster that was proposed by a rostering group at WDHB. The second

roster was created by solving the SAA problem with the objective to minimise the

expected value of the maximum difference in workloads, and is labeled ‘Expected

Value’. The third roster, labeled ‘CVaR’ was created by solving the SAA problem

with the objective to minimise the expected value of the maximum difference in

workloads in the worst 10% of scenarios, or CVaR @ 10%. The final roster was

created by averaging the 1500 possible scenarios used to solve the SAA problems for

the second and third rosters to create an ‘expected scenario’, and then finding the

roster that minimised the largest difference in workloads for that scenario. This was

called the ‘Expected Scenario’ roster.

Figure 2 shows how the estimates of the upper and lower bounds for the SAA

problems progressed. For both the upper and lower bounds 95% confidence estimates

are displayed, this means that we are 95% confident that the actual upper bound

is less than the one displayed, and 95% confident that the lower bound is more

than the one displayed. Note that only 12 iterations were required for the expected

value objective, this is because at this point the 95% estimate for the optimality gap

was below 1% and the algorithm was terminated. On the other hand, the CVaR

objective reached the limiting sample size of 75 without reducing the estimate of the

optimality gap below 1%. In general it can be seen that the bounds were further

apart for the CVaR problem and particularly in the first few iterations. This may be

due to the CVaR problem only considering the objective function value in the worst

10% of scenarios. The sample sizes therefore need to be larger before an accurate

approximation of the objective function is obtained.

The four rosters were evaluated on 500 scenarios to generate a distribution of

maximum workload differences for each roster, histograms of these distributions are

given in Figure 3, and summary statistics of the distributions are given in Table 1.

The 500 scenarios used in this testing were independent from any of the scenarios

used to create the Expected Value, CVaR, and Expected Scenario rosters. The dis-

tributions for the CVaR and Expected Scenario rosters are identical because solving

the respective problems produced the same roster.

The difference in the mean maximum workload difference between the expected

value roster and the expected scenario roster was very small. This means that benefit
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Figure 2: 95% Upper and Lower Bound Estimates for SAA Problems

of solving the SAA problem was only a 0.38% reduction in the mean maximum

workload difference. In addition using the CVaR objective produced a roster that

performed just 0.17% better than the expected value roster in the worst 10% of

scenarios, which suggests that the expected value roster already performs very well

in these scenarios. The CVaR roster did however perform 5.95% better in the very

worst case.

Table 1: Summary Statistics of Maximum Workload Difference Distribution on 500

Test Scenarios

Roster Minimum Mean Maximum CVaR @ 10%

Proposed 15.32 17.80 21.59 20.01

Expected Value 13.42 15.59 20.25 17.65

CVaR 13.50 15.65 19.11 17.62

Expected Scenario 13.50 15.65 19.11 17.62
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Figure 3: Histograms of Maximum Workload Difference Over 500 Scenarios



4 Conclusions

A method for creating a roster that balances the workloads of physicians given

uncertainty in the number of admissions was presented. An SAA problem was solved

which takes this uncertainty into account by using different scenarios of admissions.

Compared to a roster that was created by averaging the uncertainty, the roster from

the SAA problem provided little benefit. Further research is required to determine

whether this is due to the nature of the uncertainty represented in the scenarios, or

a characteristic of the type of rostering problem examined, or other factors.

Two objective functions were compared for the SAA problem: the first minimised

the expected value of the maximum difference in workloads; the second minimised

the expected value of the maximum difference in workloads in the worst 10% of

scenarios. Very little difference was observed between the two approaches, once

again further research is needed to determine the reason for this.
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