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Abstract

Geothermal power generation is not keeping pace with other renewable energy tech-

nologies. This is due to a number of factors, including the industry’s high capi-

tal cost, of which wells account for a significant portion. Hence, it is imperative

to maximize value from wells drilled by selecting them optimally. An important

technology used when making well placement decisions is computer simulation of

production. This is usually done manually, with experts creating reservoir models,

simulating wells at candidate feedzones and comparing the predicted production

scenarios. Manual selection in this manner is slow and labor intensive.

Various heuristics have been investigated to try and automate this process,

mainly based on gradient descent and stochastic search methods. However, no strict

form optimization that guarantees the best solution has been attempted for the

complex problem of selecting multiple production wells to maximize value. This pa-

per uses Mixed Integer Programming (MIP) to address this problem. An economic

model was created to calculate Net Present Values (NPVs) for a set of candidate

wells and the interactions between them using AUTOUGH2 simulation results of an

example geothermal system. Binary decision variables were used in the optimization

to select the combination of wells that would maximize total NPV.

1 Introduction

1.1 Motivation

The use of renewable forms of energy is growing globally, but geothermal is lagging

behind other forms, with a 2015 average growth rate of 2.4%, compared to an average

across all renewable sources of 12% (REN21 2016). One of the main reasons for

this is that geothermal requires a much higher capital investment than the rest,

a significant portion of which can be attributed to the cost of drilling wells. In

Iceland, for example, the costs associated drilling and constructing wells comprise

34% of total capital expenditure (Gehringer and Loksha 2012). Also, Blankenship

et al. estimate that drilling related expenses can exceed 50% of total plant costs

(Blankenship et al. 2005).



Along with high upfront costs, geothermal ventures also involve high degrees of

risk. Well drilling can be a hit-and-miss activity; a global study on the success of

geothermal wells conducted by the IFC estimates a success rate of about 50% for the

first well in a field (IFC 2013). The success rate improves as more wells are drilled in

a field, but even over the first 30 wells the studys estimate for cumulative success rate

is only about 70%. Well costs can be a make-or-break factor in a geothermal project,

and improving success rates for wells will bring large gains in reducing capital sunk

into unproductive wells.

The IFC report also found that while the success rates of exploration phase wells

have been increasing notably over the years, those of development wells and opera-

tional wells have not. This suggests that while methods for collecting information

have been progressing, those for decision making with that information have not.

This project focuses on development phase and operational wells, aiming to im-

prove well placement decisions using numerical simulation on AUTOUGH2 (Yeh,

Croucher, and O’Sullivan 2012), with Mixed Integer Optimization (MIP) models

solved in Gurobi (Gurobi optimizer reference manual 2017).

1.2 Background

The use of numerical simulation as a tool for resource estimation and to inform

drilling and production decisions has become increasingly common. Reservoir mod-

els are created and calibrated based on observations and field data such as topological

measurements, magnetotelluric (MT) surveys, and exploratory well data, in a pro-

cess known as natural state modeling. A natural state simulation will be run for

millions of years from some initial state, till it converges to a steady state repre-

senting the current reservoir and matching the available data. A calibrated natural

state model is then used as the initial state for future simulation of production. Both

natural state and future simulation modeling are done manually, in the sense that

expert modelers calibrate the models and select the conditions and parameters to

run them based on technical knowledge and experience.

Manual selection of well locations is very time and labor intensive, especially

for large, high fidelity models that take hours or even up to weeks to run. This

research attempts to create a framework for automating the future simulation process

and arrive at optimal drilling recommendations, given a calibrated natural state

model. This has the benefits of formalizing the definition of possible options and

the selection of the best one, insofar as the numerical model is representative of the

physical system. Such an approach would reduce the human effort involved, as well

as dependence on human expertise and the effect of human error. The simulation

software used was AUTOUGH2.

1.3 Previous Work

Over the past few years, there have been many attempts to formulate theoretical

frameworks, or use mathematical techniques to inform well placement decisions.

They have generally focused on using metaheuristics to find good solutions, and fall

broadly into two categories: gradient-based methods, and stochastic search algo-

rithms. Stochastic here refers to the mechanism for searching the solution space.

A common stochastic method used is Particle Swam Optimization (PSO). Ansari

et al. (Ansari, Hughes, and White 2014) used PSO to select locations for 4 produc-



tion and 4 re-injection geothermal wells out of a set of 11 existing but abandoned

wells in the US Gulf Coast. Onwunalu and Durlofsky also used PSO, but with Well

Pattern Optimization (WPO) on an oil field (Onwunalu and Durlofsky 2011), essen-

tially selecting parameters that specify the well patterns that encode the potential

solutions.

WPO has also been used with Genetic algorithms (GA); Ozdogan et al. used a

hybrid genetic algorithm in a WPO, with a fixed well pattern to reduce the solution

space (Ozdogan et al. 2005). GAs themselves have been quite commonly used for

well placement optimization and not just with WPO, for example by Montes et al.

(Montes and Bartolome 2001), who developed and tested a GA on two example

reservoirs. Another stochastic method that has been used in this area is Simulated

Annealing (SA). Beckner and Song used SA with a Travelling Salesperson formu-

lation to optimize well placement and scheduling on an example petroleum field

(Beckner and Song 1995).

Many gradient based methods have also been used for the well placement prob-

lem. Sarma and Chen use an adjoint based gradient method on a continuous ap-

proximation of some example oil reservoirs (Sarma and Chen 2008). There have also

been combinations of these methods; Bangerth et al. used a Simultaneous Pertur-

bation Stochastic Approximation, which is a stochastic version of a steepest descent

algorithm, and compared it to a Finite Difference gradient method and a SA method

(Bangerth et al. 2006).

Though these approaches all have their advantages and disadvantages, none of

them guarantee optimality (with respect to the numerical model). They all aim

to find good solutions with as few simulation runs as possible. Helgason et al.

(Helgason, gst Valfells, and Jlusson 2017) ranked all blocks in an example reservoir

by NPV to find an optimal location. This is essentially a grid search enumerating

over the entire solution space and choosing the best one, but it is guaranteed to

be optimal if only one well is being selected. However, no one has used a method

that guarantees optimality for the complex problem of selecting multiple production

wells. This paper attempts to do so while keeping the number of simulations low.

2 Problem Definition

2.1 Numerical Model

A relatively small simulation model was used, based on a geothermal system in

Indonesia. It is 16km by 14km in area, and extends 4km below the surface. The

reservoir is intersected by four high permeability faults and covered by a low perme-

ability clay cap. It was discretized into 8195 blocks and 528 nodes, in 483 columns

and 19 rock layers. Its natural state was calibrated with 3 deep up-flows (a type

of boundary flux condition) and 47 defined rock types, to match synthetic down-

hole temperature data generated for some exploration wells. Future simulation runs

considered a 25 year production timeframe, and took approximately a minute on

to run to completion on a standard Windows desktop machine. The wells in these

simulations used a deliverability model, based on a fixed productivity index (PI).

AUTOUGH2 produces listing files to store the results of these simulations, from

which production time histories were extracted and processed using PyTOUGH

(Croucher 2015) modules in Python.



2.2 Conceptual Framework

MIPs require a linear objective function and constraints. The numerical simulations

are highly non-linear, complex and cannot be used as black-box models within the

MIP optimization, so a surrogate model was required for translating simulation

output to parameters in the optimization. It had to be capable of representing the

effect of a well extracting from a feedzone on all other possible feedzones, as every

well can change the temperature and pressure distributions and flow pathways in the

reservoir. With a small simulation model like the one used, simulating all possible

solutions (feedzone combinations) can be done for a small enough solution space, but

this is impractical for larger models with longer solve times. As such, the surrogate

model had to be able to represent all possible combinations without simulating each

one.

The surrogate model was created from the outputs of a set of simulation scenarios.

Each simulation had wells placed at candidate feedzones, and time histories of well

mass flows and enthalpies were recorded and multiplied to get heat flow predictions.

The fluid harvested from the wells should actually depend on the type of power plant

installed. Dry steam plants require steam to directly turn the generator turbines,

flash steam plants depressurize hot liquid to convert it to steam before driving the

turbines, and binary cycle plants can use liquid at lower temperatures to heat a

secondary working fluid with a lower boiling point, and use its steam to drive the

turbines.

There are also other issues, such as heat loss during extraction, and possible

re-injection of used fluid back into the reservoir. These were all ignored to simplify

the problem, and heat flow was used as the production quantity rather than steam

flow or temperature regulated mass flow, assuming a direct conversion from heat

to electrical energy with a fixed generation efficiency. Production start times and

limits on extraction were also excluded, as the main aim of this model was to make

well placement decisions, not production management decisions. A simple NPV

calculation was used, multiplying the heat flows by the generator efficiency and an

electricity price to get cash flows, which were then discounted annually and summed

to give a single monetary value to each candidate solution.

The generator efficiency was set to 12%, the global average conversion efficiency

for geothermal plants as of 2012, according to Moon and Zarrouk (Moon and Zarrouk

2012). The electricity price used was the marginal cost of new generation in 2012

as per the MBIE (MBIE 2013). It doesnt matter that a New Zealand electricity

price was used even though the example field is based on one in Indonesia, as the

objective of this work was to test the approach rather than find a specific solution.

The discount rate was set arbitrarily at 10%. Plant and well costs were neglected

at first, though a cost model was included later on.

Candidate feedzones were selected based on simple physical cutoffs for temper-

ature, depth and permeability. These cutoffs were somewhat arbitrary, and were

meant to demonstrate that simple, programmable criteria can be used to define a

set of candidate feedzones with minimal manual inspection. They filtered out 41

feedzones. Since the reservoir model is 3D, these refer to blocks in the model, and

not to geographical surface locations. The number of wells desired was also limited

to four, so the solution space was every combination of four wells out of the 41 can-

didate locations. This is somewhat reflective of reality, where the number of wells

drilled is limited by plant capacity.



3 Method

3.1 Additive Interaction Model

The surrogate model created was called the Additive Interaction model, because it

considered the effect of extracting from each candidate feedzone on the potential re-

source available to all the others individually. This was done by running simulations

with wells producing from all the candidtate feedzones, but only one with a normal

PI (the main well feedzone) and the rest (observer well feedzones) with reduced PIs,

so they would producing insignificant mass flows. 41 simulations were run in total,

one with each of the candidates as the main and the rest as observers.

Despite the very small mass flows, the decays in production from the observer

feedzones were indicative of the effect of extraction from the main feedzone on them,

and were scaled back up and discounted to give NPV penalties representing how

much the main feedzone production takes away from the observer feedzones’ po-

tential values. Since all the observers have wells with very small PIs which extract

negligible amounts of resource, their effects on each other can be ignored, and thus

the main feedzone well’s effects can be isolated.

Operationally, this was done by dividing the observer wells’ PIs by a scale factor

for the simulations, and then multiplying the extracted mass flows back up by the

same scale factor. The mass flows were then multiplied by the well enthalpies to

get apparent heat flow curves, which were shifted by the baseline value (zeroed) to

get heat losses, shown for an example well in Figure 1 below. These losses are how

much potential heat flow observer feedzones lose due to the main well’s production,

and were then converted to cash flows and discounted to get the NPV penalties.

Figure 1: Example observer well apparent heat flow (blue axis) and heat flow loss

(red axis)

The MIP formulation is given overleaf. The decision variables z form a 41x41

matrix, of which the diagonals select feedzones, and the off-diagonals select interac-

tions between the selected feedzones. The objective function coefficients f also form

a matrix of the same size, containing the calculated NPVs. The diagonals contain

positive values (main NPVs), and the off-diagonals contain negative values (observer

NPV penalties). The objective function maximizes the total NPV from all selected

wells. Constraint C1 ensures that the effects of all selected wells on each other are

included (if wells i and j are both on, then the NPV penalty of well j on well i must

be included). Constraint C2 limits the number of wells selected to 4.



Maximize:

Σ41
i=1Σ

41
j=1fijzij

Subject to:

zij ≥ zii + zjj − 1 (C1)

Σ41
i=1zii ≤ 4 (C2)

Where z and f are defined as:

zii =

{
1, if well i is on

0, otherwise

zij,i6=j =

{
1, if well i is influenced by well j

0, otherwise

fij =

{
NPV of well i, if well i = j

NPV penalty of well j on well i, otherwise

3.2 Results

The results from optimizing with this surrogate model are given below in Table

1. The Additive Interaction model’s predicted NPVs for the optimal feedzones

are compared against those calculated from directly simulating wells producing at

the four feedzones together in AUTOUGH2. The direct simulation NPVs were

calculated the same way - extracting production curves, converting them to cash

flows and discounting.

Feedzone Surrogate Model Simulation % Difference

36 $ 30.1 mn $ 31.3 mn 3.7

37 $ 30.3 mn $ 31.2 mn 2.9

40 $ 35.0 mn $ 36.0 mn 2.7

41 $ 34.4 mn $ 35.4 mn 2.8

Total $ 130 mn $ 134 mn 3.0

Table 1: NPV comparison of Additive Interaction model to direct simulation for

feedzones in the optimal solution

The deviation of the surrogate model NPVs from those calculated from directly

simulation is very low, showing that this method can be used with a high degree

of accuracy, at least for this numerical model. Though the NPV estimation of the

surrogate model was shown to be very accurate for the set of feedzones deemed

optimal, there is no guarantee that this set is also optimal with respect to the

simulation model. If the Additive Interaction model isnt accurate over the whole

solution space (all combinations), then it is possible that the true optimal solution

might have been overlooked.

Checking this required simulating wells at every combination of feedzones in

AUTOUGH2, calculating the resulting NPVs and comparing with the surrogate



model predictions. Doing so for every four out of the 41 candidate feedzones would

require 101,270 simulations in total. To save runtime, this was done for a reduced

solution space instead; testing every four well combination out of a set of 20 can-

didate locations. This required 4845 simulation runs. These 20 candidate locations

were defined in the same way as the original 41, but with higher cutoffs for the

temperature and maximum permeability. The total NPVs (sum of feedzone NPVs)

for all combinations were calculated both from the surrogate model and directly

from simulation, then ranked and compared. The optimal solution for the surrogate

model was also optimal for the simulation, and the NPV errors were consistently

small, being less than 4% across all 4845 combinations.

(a) NPV comparison (b) Ranking comparison

Figure 2: Solution comparison of Additive Interaction model to direct simulation

Plotting the NPVs and rankings from the simulation against those from surrogate

model for the whole set, as in Figures 2a and b above, shows an almost linear trend.

Correlations between the surrogate model and direct simulation were calculated for

both the rankings and NPVs, and both were above 99%. There are bunches of local

clustering, with solutions grouping together in bands that can be clearly ordered.

Within these groups however, similar solutions can be “swapped”, in the sense that

one is slightly better in the numerical model, but the surrogate model predicts the

order the other way around.

Similar solutions within clusters generally only differ by one or two feedzones

being a few blocks away, and generally have at least three of the four quite physically

close to each other. As such, the surrogate model’s optimal solution is not guaranteed

to be optimal for the simulation, but it will be near-optimal, being the same vicinity

and having a very similar output to the true optimal solution.

3.3 More Wells

The next step was to extend this to larger numbers of well selected. The same

optimization was run multiple times with the NPVs from the surrogate model, but

with the limit on the maximum number of selected wells in constraint C2 gradually

increased from four up to 15. The MIP only ever chose 11 wells; even when the

maximum well limit was 12 or above. For these cases, it didnt select as many wells

as it could have. This was because at that point, the penalties from additional wells

began to outweigh their own NPV contributions. Gurobi also took longer to solve



the MIP when the well limit was increased. The MIP would solve in under a second

for the four well case, but took several minutes for the ten well case. This is because

there are far more possible combinations of ten feedzones than there are of four, so

the solution space covered during the solve is considerably larger.

The optimal feedzones selected in the four well limit scenario remained in the

optimal selection as the well limit was increased, with others being added to the

selection. For all the limit scenarios, the model outputs were tested by comparing

the NPVs to those calculated from running AUTOUGH2 simulations with wells

producing from all the selected feedzones. The percentage error of NPV from the

surrogate model compared to that from directly simulating the wells was plotted

against the number of wells in Figure 3 below, for the four wells that remained

optimal in all scenarios, and for the NPV sum over all wells.

Figure 3: NPV errors for optimal wells vs. number of optimal wells

While the model is very accurate for small number of well, the discrepancy from

the direct simulation values grows quite large as the number of wells increases,

possibly nonlinearly. It reaches about 10% for eight wells, and about 20% for ten

wells. This is likely relative to model size though; applying this procedure to a larger

reservoir model will probably still give a small error for the ten well case and the

error might not become significant till the number of selected wells reaches 20. The

errors are also related to location; feedzones jy14 and kt14 have lower errors than

the other two because they are deeper in the reservoir. The wells added as the well

limit was increased were in shallower feedzones and therefore were further away and

had less effect on these two feedzones than on the other two.

3.4 Additive Interaction Model with Well Costs

Having shown that the model is accurate for small numbers of wells and when used

with the optimization gives solutions that are optimal or near optimal, another

optimization was done with drilling costs included in the economic calculations.

This was done to get some results reflective of a real world scenario. An existing

cost model was taken (Lukawski et al. 2014) and used to define well drilling cost as

a function of depth for each candidate feedzone. Their model is given below, with

the cost being in USD.

Cost = 1.72 ∗ 10−7 ∗ Depth2 + 2.3 ∗ 10−3 ∗ Depth − 0.62



These were then treated as upfront costs and were not discounted. Well main-

tenance and other infrastructure costs were not included either. The constraint in

the previous MIP formulation that limited the number of wells (C2) was removed.

Instead, the well costs were included in the objective function, and were used to

limit the number of wells. The new formulation is given below.

Maximize:

Σ41
i=1Σ

41
j=1fijzij − Σ41

i=1cizii

Subject to:

zij ≥ zii + zjj − 1 (C1)

Where:

ci = Drilling cost for well i

The optimal solution selected included nine wells in total; the same nine wells as

were selected when the well limit was set to nine without costs imposed. If the costs

set were greater, fewer wells would have been chosen, and if they were lower, more

wells would have been chosen. The costs didnt affect which wells are chosen because

the best well blocks are all quite close to each other (were at similar depths). If they

were more spread out, of if surface topology varied more drastically, the well costs

might have been a bigger determinant. Another factor was that directional drilling

and using multiple feed zones in a single wellbore were not considered. If they were

included in the cost model, the clustering effect of the blocks selected would have

been further accentuated.

3.5 Alternative Numerical Model

An issue with the results so far is that the optimal selections for all the scenarios

tested tend to pick feedzones clustered together in close proximity. This is what

would be expected from a greedy heuristic, and is likely due to the fact that the

model calibration defined a very “leaky” reservoir, meaning the rock permeabilities

are quite high. This is not necessarily a bad thing as the model did fit the data it

was initially calibrated to in the natural state modelling, and this is where the non-

uniqueness of these numerical simulations should be noted, as a different natural

state calibration could also fit that data. An interesting question to ask, though out

of the scope of this paper, is which future simulation prediction should be trusted,

given multiple, equally valid natural state models?

That aside, another calibration of the same reservoir model (same geometry and

discretization) was used for testing if the greedy approach is always right. It was

calibrated to the same data, but using different deep upflow boundary conditions,

and different, much lower rock permeabilities. The effect of the lower permeabilities

is that it is harder for fluid to flow through the reservoir, so there is greater local

pressure loss due to extraction from any feedzone. As such, choosing feedzones quite

close to each other should be un-economical, as there is less resource available for

each to draw from, and so they should be more spaced out.



(a) Original Calibration (b) Alternative Calibration

Figure 4: Optimal Solution Comparison

This is exactly what was seen in the optimal selection from using the MIP with-

out well costs on this calibration. The optimal feedzone surface locations for both

calibrations are shown above in Figures 4a and b as the small black dots; those from

the original calibration are also labelled with the feedzone IDs for reference. The

other circles are various surface features. For the original calibration, the optimal

feedzones are all clustered together on the most permeable of the faults (light grey

lines), but for the alternative one they are spread out on two different faults on

opposite sides of the reservoir.

4 Summary

4.1 Conclusion

This paper aimed to streamline and formalize the future simulation process, to

optimally select multiple production wells, with as few simulation runs as possible.

MIP formulations were used to achieve this using Gurobi as the solver. First, a

few simple rules were made to define a set of candidate feedzones as production

well targets in AUTOUGH2 simulations. NPVs calculated from simulation outputs

were used as coefficients in the objection function for the optimization. A surrogate

model was developed to allow the optimization to explore the entire solution space

without having to run a large number of AUTOUGH2 simulations. It simulated a

well at each feedzone individually (a total of 41 runs) and got NPVs for each well,

and NPV penalties for the effect of each well on every other candidate feedzone.

It was very accurate when compared to NPVs calculated from well directly sim-

ulated together, for small numbers of well selected. When compared against direct

simulation for all possible solutions in a reduced solution space, the solution NPVs

and rankings for the model were very strongly correlated with those from the sim-

ulation. The model optimal solution is guaranteed to find solutions to be near

optimal, if not optimal, for the simulation. As the limit on wells chosen increased

from four to 11, the NPV error of the model went up from less than 4% to over

20%. The MIP formulation was extending to include a basic cost model, and finally

was the method was tested on another version of the same reservoir with a different

calibration, showing that non-greedy solutions can also be found.



4.2 Future Work

The Additive Interaction model and its accompanying MIP formulation will be ex-

tended to include scheduling optimization, as not all wells are planned and drilled

from the start in a real project. This is being attempted with the current model

by shifting the Additive Interaction model’s output production curves in time based

on estimates of how much potential resource a feedzone has lost due to the previ-

ous operation of other feedzones, which has the benefit of keeping the number of

simulation runs low. These shifted curves will be converted to NPVs and used to

inform the optimization, perhaps with a column generation approach to tackle the

huge complexity of the problem.

Another approach that will be tried is to stagger the simulations and the decisions

in a multi-stage process. For example, this could go as follows: Solve an initial MIP

to select the first four wells drilled, then run a simulation with those wells producing

for a phase A period. Process the simulation outputs from the end of the phase A

period and use in a MIP to select the next four wells, and continue the simulation

into a phase B period with the new wells producing, and so on. This is also more

reflective of a real world scenario, where wells are typically drilled in stages. Once

developed, the full well placement and scheduling optimization framework will be

tested on more developed and realistic reservoir models. It is planned to use it

with an AUTOUGH2 model of the Ohaaki geothermal system in the central north

island, which has been continually developed over decades and for which there is an

abundance of data and usage experience.

After thoroughly testing the fully deterministic model, the next step would then

be to incorporate uncertainty in the simulations and carry it through to the opti-

mizations. Uncertainty can be introduced into the system at a number of levels:

in the well PIs, in the economic parameters (generator efficiency, electricity price,

discount rate), in the model calibration as mentioned previously, or even in the ge-

ometry and discretization of the numerical model. Various optimization techniques

will be explored for dealing the inherent uncertainty of the problem to give robust

optimal recommendations.
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