
Computing the frustration index in signed graphs using

binary programming

Samin Aref Andrew J. Mason* Mark C. Wilson
Department of Computer Science *Department of Engineering Science

University of Auckland, Auckland, Private Bag 92019 New Zealand
sare618@aucklanduni.ac.nz

Abstract

Computing the frustration index of a signed graph is a key to solving problems in many
fields including social networks, physics, material science, and biology. In social networks
the frustration index determines the distance of a network from a state of structural
balance. Although the definition of the frustration index goes back to 1960, there is no
method for computing the frustration index of large scale networks. The main reason
seems to be the complexity of computing the frustration index which is closely related to
well-known NP-hard problems such as MAXCUT.

New quadratic and linear binary programming models are developed to compute the
frustration index exactly. We introduce several speed-up techniques involving prioritised
branching and valid inequalities inferred from graph structural properties. The speed-up
techniques make our models capable of processing graphs with thousands of nodes and
edges in seconds on inexpensive hardware. The solve time and solution quality comparison
against the literature shows the superiority of our models in both random and real signed
networks.

Keywords: 0-1 programming, Optimisation, Frustration index, Mixed integer pro-
gramming, Signed graphs, Structural balance

Mathematics Subject Classification: 90C09 90C11 90C90 90C35 05C22

1 Introduction

Local ties between entities lead to global structures in networks. Ties can be formed as a
result of interactions and individual preferences of the entities in the network. The dual
nature of interactions in various contexts means the ties may form in two opposite types,
namely positive ties and negative ties. In a social context, this is interpreted as friendship
vs. enmity or trust vs. distrust between people. The term signed network embodies a
multitude of concepts involving relationships characterisable by ties with plus and minus
signs. Signed graphs are used to model such networks where edges have positive and
negative signs. Structural balance in signed graphs is a macro-scale structural property
that has become a focus in network science.

Structural balance theory was the first attempt to understand the sources of tensions
and conflicts in groups of people with signed ties [17]. Cartwright and Harary identified

cycles of the graph (closed-walks with distinct nodes) as the origins of tension, in partic-
ular cycles containing an odd number of negative edges [7]. Signed graphs in which no
such cycles are present satisfy the property of structural balance. The vertex set of bal-
anced signed networks can be partitioned into k ≤ 2 subsets such that each negative edge
joins vertices belonging to different subsets [7]. For graphs that are not totally balanced,
a distance from total balance (a measure of partial balance) can be computed. Among
various measures is the frustration index that indicates the minimum number of edges
whose removal (or equivalently, negation) results in balance [1, 15,24].

2 Literature review

The frustration index is a key to frequently stated problems in many different fields of
research [11, 12, 16, 19, 20]. In biological networks, optimal decomposition of a network
into monotone subsystems is made possible by calculating the signed graph frustration
index [19]. In finance, risk of a portfolio is related to the balance of its underlying signed
graphs [16]. In Physics, the frustration index provides the minimum energy state in
models of atomic magnets [20]. In international relations, signed clustering of countries
in a region can be investigated using the frustration index [11]. In Chemistry, bipartite
edge frustration is an indicator of the chemical stability of carbon structures known as
fullerenes [12].

Calculating the frustration index is an NP-hard problem equivalent to the ground
state calculation of spin glass model on unstructured graphs [4, 23]. Computation of the
frustration index can also be reduced from the graph maximum cut (MAXCUT) problem,
in a special case of all negative edges, which is known to be NP-hard [18].

For planar graphs MAXCUT can be solved in polynomial time [14]. The frustra-
tion index can also be computed in polynomial time for planar graphs [18, 21], which is
equivalent to the ground state calculation of a two-dimensional spin glass model with no
periodic boundary conditions and no magnetic field that is also solvable in polynomial
time [10,13]. In general graphs however, the frustration is even NP-hard to approximate
within any constant factor [18]. The computational complexity of the problem might
have played a role in the lack of systematic investigation of computing the frustration
index while there are many studies on approximating it.

The frustration index can be approximated to a factor of O(
√

log n) [2] or O(k log k) [3]
where n is the number of vertices and k is the frustration index. Coleman et al. provides a
review on the performance of several approximation algorithms of the frustration index [8].
Using a parametrised algorithmics approach, Hüffner, Betzler, and Niedermeier show that
the frustration index (under a different name) is fixed parameter tractable and can be
computed in O(2km2) [18] where m is the number of edges and k is the fixed parameter
(the frustration index). The values of k we have observed in signed graphs inferred
from the literature makes this approach impractical. There is no method suggested for
computing the frustration index of large scale networks that guarantees the solution
quality.

The principal focus of this research study is to provide insight into computing the
frustration index. Besides multiple applications in various fields of research, another
motivation for computing this measure is to systematically investigate signed networks
transition to balance using basic graph operations on frustrated edges. Thus we develop

an efficient algorithmic method for exact computation of the frustration index.

3 Preliminaries

3.1 Basic notation

We consider undirected signed networks G = (V,E, σ). The set of nodes is denoted by
V , with |V | = n. The set of edges is represented by E that is partitioned into the set
of positive edges E+ and the set of negative edges E− with |E| = m, |E−| = m−, and
|E+| = m+ where m = m− +m+. The sign function is denoted by σ : E → {−1,+1}m.

We represent them undirected edges inG as ordered pairs of vertices E = {e1, e2, ..., em}
⊆ {(i, j) | i, j ∈ V, i < j}, where a single edge ek between nodes i and j, i < j, is denoted
by ek = (i, j), i < j. The entries of the symmetric adjacency matrix A = (aij) are defined
in (1).

aij =

{
σ(i,j) if (i, j) ∈ E or (j, i) ∈ E
0 if (i, j) /∈ E (1)

The number of positive (negative) edges connected to the node i ∈ V represents
positive (negative) degree of the node and is denoted by d+(i) (d−(i)). The degree of
node i is defined by d(i) = d+(i) + d−(i).

A walk of length k in G is a sequence of nodes v0, v1, ..., vk−1, vk such that for each
i = 1, 2, ..., k there is an edge from vi−1 to vi. If v0 = vk, the sequence is a closed walk
of length k. If the nodes in a closed walk are distinct except for the endpoints, it is a
directed cycle (for simplicity cycle) of length k. The sign of a cycle is the product of the
signs of its edges. Cycles with negative signs are unbalanced. A balanced cycle is one
with positive sign. A balanced graph is one with no negative cycles.

3.2 Node colouring and frustration count

Satisfied and frustrated edges are defined based on colourings of the nodes. Colouring
the nodes with black and white, a frustrated (satisfied) edge (i, j) is either a positive
(negative) edge with different colours on the endpoints i, j or a negative (positive) edge
with the same colours on the endpoints i, j.

To be more specific, for any signed graph G = (V,E, σ), we can partition V into two
sets, denoted X ⊆ V and X = V \X. We call X = (x1, x2, . . . , xn) the colouring set
and we think of this partitioning as specifying a colouring of the nodes, where each node
i ∈ X is coloured black, and i ∈ X is coloured white. We let xi denote the colour of node
i ∈ V under X, where xi = 1 if i ∈ X and xi = 0 otherwise.

We define the frustration count fG(X) as the number of frustrated edges of G under
X:

fG(X) =
∑

(i,j)∈E

fij(X)

where fij(X) is the frustration state of edge (i, j) taking value 1 for a frustrated and
values 0 for a satisfied edge.

The frustration index L(G) of a graph G can be found by finding a subset X∗ ⊆ V
of G that minimises the frustration count fG(X), i.e., solving Eq. (2). Note that fG(X)
gives an upper bound on L(G) for any X ⊆ V .

L(G) = min
X⊆V

fG(X) (2)

4 Mathematical programming models

In this section, we formulate four mathematical programming models in (3) – (6) to
minimise the frustration count as the objective function.

4.1 An unconstrained binary quadratic programming model

We start with an objective function to minimise the frustration count. Note that the
frustration of a positive edge (i, j) can be represented by fij = xi+xj−2xixj ∀(i, j) ∈ E+

using the two binary variables xi, xj for the endpoint colours. For a negative edge, we
have fij = 1 − (xi + xj − 2xixj) ∀(i, j) ∈ E−. This gives the UBQP model in (3)
that calculates the frustration index in the minimisation objective function. The optimal
solution represents a subset X∗ ⊆ V of G that minimises the frustration count. Note
that the binary quadratic model in Eq. (3) has n decision variables and no constraints.

min
xi:i∈V

Z =
∑

(i,j)∈E+

xi + xj − 2xixj +
∑

(i,j)∈E−

1− (xi + xj − 2xixj)

s.t. xi ∈ {0, 1} ∀i ∈ V
(3)

The optimal value of the objective function in Eq. (3) is denoted by Z∗ which rep-
resents the frustration index. The next three subsections address three binary linear
programming models in (4), (5), and (6).

4.2 The AND model

Our first linear model is the AND model. As formulated in Eq. (4), the non-linear
term xixj in the objective function of Eq. (3) is replaced by additional binary variables
xij = xiANDxj for each edge (i, j) that take value 1 whenever xi = xj = 1 (both
endpoints are coloured black) and 0 otherwise.

min
xi:i∈V,xij :(i,j)∈E

Z =
∑

(i,j)∈E+

xi + xj − 2xij +
∑

(i,j)∈E−

1− (xi + xj − 2xij)

s.t. xij ≤ xi ∀(i, j) ∈ E+

xij ≤ xj ∀(i, j) ∈ E+

xij ≥ xi + xj − 1 ∀(i, j) ∈ E−

xi ∈ {0, 1} ∀i ∈ V
xij ∈ {0, 1} ∀(i, j) ∈ E

(4)

The dependencies between the xij and xi, xj values are taken into account using stan-
dard AND constraints. The AND model has n+m variables and 2m+ +m− constraints.
Note that xij variables are dependent variables because of the constraints. Therefore, we
may drop the integrality constraint of the xij variables and consider them as continuous

variables in the unit interval, xij ∈ [0, 1]. The next subsection discusses an alternative
binary linear model for calculating the frustration index.

4.3 The XOR model

Minimising frustration count can be directly formulated as a binary linear model. The
XOR model is designed to directly count the frustrated edges using binary variables
fij ∀(i, j) ∈ E. As before, we use xi ∀i ∈ V to denote the colour of a node. Our model is
formulated by observing that the frustration state of a positive edge (i, j) ∈ E+ is given
by fij(X) = xiXORxj . Similarly for (i, j) ∈ E−, we have fij(X) = 1− xiXORxj .

Therefore, the minimum frustration count under all node colourings (x1, x2, . . . , xn)
is obtained by solving (5):

min
xi:i∈V,fij :(i,j)∈E

Z =
∑

(i,j)∈E

fij

s.t. fij ≥ xi − xj ∀(i, j) ∈ E+

fij ≥ xj − xi ∀(i, j) ∈ E+

fij ≥ xi + xj − 1 ∀(i, j) ∈ E−

fij ≥ 1− xi − xj ∀(i, j) ∈ E−

xi ∈ {0, 1} ∀i ∈ V
fij ∈ {0, 1} ∀(i, j) ∈ E

(5)

The dependencies between the fij and xi, xj values are taken into account using two
standard XOR constraints per edge. Therefore, the XOR model has n+m variables and
2m constraints. Note that fij variables are dependent variables because of the constraints
and the objective function pressure. Therefore, we may specify fij variables as continuous
variables in the unit interval, fij ∈ [0, 1]. A third linear formulation of the problem is
provided in the next subsection.

4.4 The ABS model

In this section, we propose the ABS model, a binary linear model in which two edge
variables are used to represent the frustration state of an edge.

We start by observing that for a node colouring (x1, x2, . . . , xn), |xi − xj | = 1 for
a positive frustrated edge and |xi − xj | = 0 for a positive satisfied edge (i, j) ∈ E+.
Similarly, 1 − |xi − xj | = |xi + xj − 1| gives the frustration state of a negative edge
(i, j) ∈ E−.

To model the absolute value function, we introduce additional binary variables eij , hij ∈
{0, 1}. We observe that for a positive edge if xi−xj = eij −hij then |xi−xj | = eij +hij .
Similarly, for a negative edge (i, j) ∈ E− if xi+xj−1 = eij−hij then |xi+xj−1| = eij+hij .
This allows us to formulate the linear model in (6).

The objective function, being the total number of frustrated edges, sums the above-
mentioned absolute value terms to compute the frustration count in (6). The conditions
observed for positive and negative edges are expressed as linear constraints in (6). There-
fore, the ABS model has n+ 2m variables and m constraints.

min
xi:i∈V,eij ,hij :(i,j)∈E

Z =
∑

(i,j)∈E

eij + hij

s.t. xi − xj = eij − hij ∀(i, j) ∈ E+

xi + xj − 1 = eij − hij ∀(i, j) ∈ E−

xi ∈ {0, 1} ∀i ∈ V
eij ∈ {0, 1} ∀(i, j) ∈ E
hij ∈ {0, 1} ∀(i, j) ∈ E

(6)

4.5 Comparison of the four models

In this subsection we compare the four models introduced above, based on the number
and type of constraints. Table 1 summarises the comparison results.

Table 1: Comparison of the variables and constraints in the four models

UBQP (3) AND (4) XOR (5) ABS (6)

Variables n n+m n+m n+ 2m
Constraints 0 2m+ +m− 2m m
Constraint type - linear linear linear
Objective quadratic linear linear linear

As Table 1 shows, the number of variables and constraints differ in the four models.
Eq. (7) shows that the three linear models are mathematically equivalent.

fij = eij + hij = (1− aij)/2 + aij(xi + xj − 2xij) (7)

However, the three linear models perform differently in terms of solve time and the
number of branch and bound (B&B) nodes required to solve a given problem. We continue
to techniques of improving the performance of linear models in the next section.

5 Speed-up techniques

In this section we discuss techniques to speed up the branch and bound algorithm for
solving the binary linear models. To improve the branch and bound, one may use certain
conditions based on the structure of the binary programming problem [5]. Two techniques
often deployed in solving Interger Programming (IP) models are valid inequalities and
branching priority.

We implement some valid inequalities as additional non-core constraints that are
kept aside from the core constraints of the model. Such implementation of additional
restrictions is referred to as lazy constraints [22]. The branch and bound algorithm can
be provided with a list of prioritised variables for branching which may speed up the
solver if the prioritised list is more effective in making integer values. The solve time
improvement evaluation is based on 100 random graphs with n = 30,m = 300, and
m− = 150.

5.1 Branching priority and fixing a colour

In binary programming models, the root node solution is integral if the constraint matrix
is unimodular and the right hand side vector is integral. However, most practical optimi-
sation problems, including the problem under investigation, do not have such matrices [5]
resulting in a fractional root node solution.

In order to speed up the algorithms, we consider adding a valid inequality to increase
the root node objective function. In the XOR and ABS models, we observe that there
always exists a fractional solution of xi = 0.5 ∀i ∈ V which gives an optimal root node
objective function value of 0.

We can increase the root node objective by fixing one node variable which breaks the
symmetry that exists and allows changing all node colours to give an equivalent solution.
While in the AND model the fractional solution is different, the root node objective
function can still be increased following the same process. We conjecture that the best
node variable is the one associated with the highest degree. This constraint is formulated
in (8).

xk = 1 k = arg max
i∈V

di (8)

In our experiments, we always observed an improvement in the root node objective
value when (8) was added, which shows it is useful.

Based on the same idea, we may modify the branch and bound algorithm so that it
branches first on the node with the highest degree. This modification is implemented by
specifying a branching priority for the node variables in which variable xi has a priority
given by its degree di.

Our experiments on random graphs show that fixing a colour and using prioritised
branching lead to 65%, 70%, and 43% reduction in the average solve time of AND, XOR,
and ABS models respectively.

5.2 Unbalanced triangle valid inequalities

The structural properties of the problem allow us to restrict the model by adding valid
inequalities as additional constraints [5]. Structural properties of signed graphs can be
used to determine valid inequalities.

In this subsection, we consider adding one inequality for each unbalanced cycle of
length 3 (triangle) in the graph. Every unbalanced cycle of the graph contains an odd
number of frustrated edges. This means that any colouring of the nodes in an unbalanced
triangle must produce at least one frustrated edge. Recalling that under a colouring the
variable fij is 1 if edge (i, j) is frustrated (and 0 otherwise), then for any node triple
(i, j, k) defining an unbalanced triangle in G, we have the inequality (9) which is valid for
all feasible solutions of the problem.

fij + fik + fjk ≥ 1 ∀(i, j, k) ∈ T− (9)

In (9), T− = {(i, j, k) ∈ V 3 | σ(i,j)σ(i,k)σ(j,k) = −1} denotes the set of node triples
that define an unbalanced triangle. The expression in inequality (9) denotes the sum
of frustration states for the three edges (i, j), (i, k), (j, k) making an unbalanced triangle.
Note that in order to implement the unbalanced triangle valid inequality (9), fij must be

represented using the decision variables in the particular model. Eq. (7) shows how fij
can be defined in the AND and ABS models.

We observe an improvement in the root node objective when the unbalanced triangle
valid inequalities are added to the models which shows they are useful. From a solve time
perspective, our experiments on random graphs show that implementing this speed-up
technique leads to 65% and 87% reduction in the average solve time of AND and XOR
models respectively. For the ABS model the solve time improvement is very small (< 5%).

5.3 Overall improvement made by the speed-up techniques

In this section, various random signed networks are solved by our optimisation models
using Gurobi version 7.0.2 on a desktop computer with an Intel Corei5 4670 @ 3.40 GHz
and 8.00 GB of RAM running 64-bit Microsoft Windows 7. The models were created
using the Gurobi Python environment in Anaconda 3-4.2.0 Jupyter.

We discussed the solve time improvement made by the individual implementation of
the speed-up techniques on the binary linear models in the Section 5. According to the
same analysis, the total solve time reduction observed when all speed-up techniques are
implemented is 68% for the AND model, 90% for the XOR model, and 45% for the ABS
model. Figure 1 shows the upper and lower bounds in solving the three linear models with
and without the speed-up techniques for a random graph with n = 40,m = 620,m− =
434.

0

50

100

150

200

250

0 100 200 300
Time (seconds)

Upper bound (with speed-up)

Lower bound (with speed-up)

Upper bound (without speed-up)

Lower bound (without speed-up)

(a) The AND model

0

50

100

150

200

250

0 100 200 300 400 500
Time (seconds)

Upper bound (with speed-up)

Lower bound (with speed-up)

Upper bound (without speed-up)

Lower bound (without speed-up)

(b) The XOR model

0

50

100

150

200

250

0 100 200 300 400 500
Time (seconds)

Upper bound (with speed-up)

Lower bound (with speed-up)

Upper bound (without speed-up)

Lower bound (without speed-up)

(c) The ABS model

Figure 1: The impact of speed-up techniques on the solve time and the upper and lower
bounds for a random graph with n = 40,m = 620,m− = 434 (colour version online)

6 Evaluating performance against the literature

In this section, we use both random and real networks to evaluate not only the solve time,
but also the solution quality of our models against other methods in the literature.

6.1 Solve time in random graph

In this subsection, we compare the solve time of our algorithm against all other exact
algorithms suggested for computing the frustration index. Our review of the literature
finds only two exact methods capable of computing the frustration index [6, 18].

Brusco and Steinley have reported running times for very small graphs with only up
to n = 21 vertices. While, their exact algorithm fails to solve graphs as large as n = 30
in a reasonable time [6], our binary linear models solve such instances in split seconds.

Hüffner, Betzler, and Niedermeier have generated random graphs by specifying n,
degree distribution, clustering coefficient, and the percentage of negative edges [18]. The
largest of such random graphs solvable by their algorithm in 20 hours has n = 500 nodes.
They also reported that only 3 out of 5 random graphs with n ∈ {100, 200, 300, 400, 500}
can be solved by their method in 20 hours. Our XOR model solves all such instances in
less than 100 seconds.

6.2 Solve time and solution quality in real networks

In this section we use signed network datasets from biology and international relations.
The frustration index of biological networks has been a subject of interest to measure
the network distance to monotonicity [9, 19]. In this section, the frustration index is
computed in real biological networks by solving the XOR model (6) coupled with the
speed-up techniques.

There are four signed biological networks analysed by [9] and [19]. The epidermal
growth factor receptor (EGFR) pathway is a signed network with 779 edges. The molec-
ular interaction map of a white blood cell (macrophage) is another well-studied signed
network containing 1425 edges. We also investigate two gene regulatory networks, re-
lated to two organisms: a eukaryote, the yeast Saccharomyces cerevisiae (yeast), and a
bacterium: Escherichia coli (E.coli). The yeast and E.coli networks have 1080 and 3215
edges respectively. Figure 2 shows the four biological signed networks. The colour of
edges correspond to the signs on the edges (green for +1 and red for −1). For more
details on the four biological datasets, one may refer to [19].

(a) EGFR (b) Macrophage (c) Yeast (d) E.coli

Figure 2: Four biological signed networks visualised using Gephi (colour version online)

As the signed graph frustration problem has been previously investigated mainly using
heuristic and approximation algorithms, we compare the solution quality and solve time
of our exact algorithm with such techniques as well. Various performance measures for
the XOR model (6) solving real signed networks are illustrated in Table 2.

DasGupta et al. have suggested approximation algorithms [9] that are later tested
on the four biological networks by [18]. Their approximation method provides 196 ≤
L(G)EGFR ≤ 219 which our exact model proves to be incorrect. The bounds obtained
by implementing DasGupta et al. approximation are not incorrect for the other three
networks, but they have very large gaps between lower and upper bounds.

Table 2: Performance of the XOR model (6) tested on large biological signed networks

Graph L(G) Root node objective Number of B&B nodes Solve time (s)

EGFR 193 15.5 3 0.28
macrophage 332 15.0 64 0.56
yeast 41 11.5 3 0.13
E.coli 371 127.5 30 2.21

Hüffner, Betzler, and Niedermeier have previously investigated frustration in the four
biological networks suggesting a data reduction scheme and an exact algorithm [18].
Their suggested data reduction scheme can take more than 5 hours for yeast, more than
15 hours for EGFR, and more than 1 day for macrophage if the parameters are not
perfectly tuned. Besides the solve time issue, their exact algorithm provides L(G)EGFR =
210, L(G)macrophage = 374, both of which are incorrect. They report their algorithm failed
to terminate for E.coli [18].

Iacono et al. have also investigated frustration in the four networks [19]. Their heuris-
tic algorithm provides upper and lower bounds for EGFR, macrophage, yeast, and E.coli
with 96.37%, 90.96%, 100%, and 98.38% ratio of lower to upper bound respectively. Re-
garding solve time, they have only mentioned that their heuristic requires a fairly limited
amount of time (a few minutes on an ordinary PC).

Table 3 sums up the solution quality and solve time comparison of our suggested
model against the literature. We compare our solve times against the best times reported
in the previous works.

Table 3: Comparison of the solution quality and solve time against the literature

Graph DasGupta et al. [9] Hüffner et al. [18] Iacono et al. [19] XOR

Q
u

al
it

y

EGFR [196, 219] 210 [186, 193] 193
macrophage [218,383] 374 [302, 332] 332
yeast [0, 43] 41 41 41
E.coli [0, 385] Not converged [365, 371] 371

T
im

e

EGFR 420 s 6480 s >60 s 0.28 s
macrophage 2640 s 60 s >60 s 0.56 s
yeast 4620 s 60 s >60 s 0.13 s
E.coli Not reported Not converged >60 s 2.21 s

While data reduction schemes [18] can take up to 1 day for these datasets and heuris-
tic algorithms [19] only provide bounds with up to 9% gap from optimality, our XOR
model equipped with the speed-up techniques solves the 4 datasets to optimality in a
few seconds. Note that the AND and ABS models also solve the datasets to optimality,
but their executions take longer (still less than a minute when coupled with the speed-up
techniques).

7 Conclusion

In this study, we provided a novel method for computing a standard measure in signed
graphs which has many application in different disciplines. The present study suggested

efficient mathematical programming models and speed-up techniques for solving an NP-
hard graph optimisation problem. We develop four binary optimisation models which
contrary to the current methods in the literature come with a guarantee of solution
quality. Then we suggest prioritised branching and valid inequalities which provide up
to 90% solve time improvement for our linear optimisation models.

The speed-up techniques make the models capable of processing relatively large graphs
on an inexpensive computer. Solve time and solution quality comparison to the literature
proves the superiority of our models tested on both random and real signed graphs.
Considering the recent developments in the area of quantum computing and the ever-
increasing size of practical instances of the problem, a possibility for future investigation
is applying more advanced computing technology for solving the UBQP formulation of
the problem or analysing the boolean quadric polytope using a polyhedral approach.

References

[1] R. P. Abelson and M. J. Rosenberg. Symbolic psycho-logic: A model of attitudinal
cognition. Behavioral Science, 3(1):1–13, Jan. 1958.

[2] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(log n) approxi-
mation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 573–581, New York, NY, USA, 2005. ACM.

[3] A. Avidor and M. Langberg. The multi-multiway cut problem. Theoretical Computer
Science, 377(1):35 – 42, 2007.

[4] F. Barahona. On the computational complexity of Ising spin glass models. Journal
of Physics A: Mathematical and General, 15(10):3241, 1982.

[5] A. Bilitzky and A. Sadeh. Efficient solutions for special zero-one programming prob-
lems. Journal of Combinatorial Optimization, 10(3):227–238, Nov 2005.

[6] M. Brusco and D. Steinley. K-balance partitioning: An exact method with applica-
tions to generalized structural balance and other psychological contexts. Psycholog-
ical Methods, 15(2):145–157, 2010.

[7] D. Cartwright and F. Harary. Structural balance: a generalization of Heider’s theory.
Psychological Review, 63(5):277–293, 1956.

[8] T. Coleman, J. Saunderson, and A. Wirth. A local-search 2-approximation for
2-correlation-clustering. In European Symposium on Algorithms, pages 308–319.
Springer, 2008.

[9] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang. Algorithmic and complexity
results for decompositions of biological networks into monotone subsystems. Biosys-
tems, 90(1):161–178, 2007.

[10] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact
ground states of Ising spin glasses: New experimental results with a branch-and-cut
algorithm. Journal of Statistical Physics, 80(1):487–496, Jul 1995.

[11] P. Doreian and A. Mrvar. Structural Balance and Signed International Relations.
Journal of Social Structure, 16:1–49, 2015.

[12] T. Doslic and D. Vukicevic. Computing the bipartite edge frustration of fullerene
graphs. Discrete Applied Mathematics, 155(10):1294–1301, May 2007.

[13] N. G. Fytas, P. E. Theodorakis, and A. K. Hartmann. Revisiting the scaling of
the specific heat of the three-dimensional random-field Ising model. The European
Physical Journal B, 89(9):200, 2016.

[14] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975.

[15] F. Harary. On the measurement of structural balance. Behavioral Science, 4(4):316–
323, Oct. 1959.

[16] F. Harary, M.-H. Lim, and D. C. Wunsch. Signed graphs for portfolio analysis in
risk management. IMA Journal of Management Mathematics, 13(3):201–210, Jan.
2002.

[17] F. Heider. Social perception and phenomenal causality. Psychological Review,
51(6):358–378, 1944.

[18] F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for
signed graph balancing. Journal of Combinatorial Optimization, 20(4):335–360,
2010.

[19] G. Iacono, F. Ramezani, N. Soranzo, and C. Altafini. Determining the distance to
monotonicity of a biological network: a graph-theoretical approach. Systems Biology,
IET, 4(3):223–235, 2010.

[20] P. W. Kasteleyn. Dimer Statistics and Phase Transitions. Journal of Mathematical
Physics, 4(2):287–293, Feb. 1963.

[21] O. Katai and S. Iwai. Studies on the balancing, the minimal balancing, and the
minimum balancing processes for social groups with planar and nonplanar graph
structures. Journal of Mathematical Psychology, 18(2):140–176, 1978.

[22] E. Klotz and A. M. Newman. Practical guidelines for solving difficult mixed integer
linear programs. Surveys in Operations Research and Management Science, 18(1):18–
32, 2013.

[23] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical Review
Letters, 35:1792–1796, Dec 1975.

[24] T. Zaslavsky. Balanced decompositions of a signed graph. Journal of Combinatorial
Theory, Series B, 43(1):1–13, 1987.

