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Abstract

In the face of ever-changing water supply and demand, UK water utility compa-

nies are obligated to provide long-term plans every five years that outline additional

developments and restrictions needed to ensure a safe supply of water. To assist

with this, ICS Consulting (UK) is developing an optimisation framework for pro-

ducing investment plans that accommodate uncertainty in supply and demand. As

well as options for investing in infrastructure, water utilities can utilise temporary

restrictions on water demand that carry a non-linear economic cost. In an integer

programming context, this presents significant challenges, as the cost function now

needs to be discretised and controlled through binary variables. We aimed to find

novel ways to deal with the computational burden presented by the way restrictions

are handled in the optimisation framework. Both existing methods and completely

new options were closely investigated. At the completion of this project, we have

contributed several new solution techniques and improvements. These additions

were combined with all existing approaches and, through a testing framework, we

were able to extract valuable information about: 1) probable causes of slow solution

times; and 2) the best approach to apply for further development.
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1 Introduction

The human population has been rapidly growing for the last 50 years. Utility com-

panies around the world are under constant pressure to improve and expand their

assets in order to keep up with this growing demand. In particular, many water

utilities have adopted an approach based on Integrated Water Resource Manage-

ment (IWRM) as proposed by the Global Water Partnership (GWP). IWRM is

defined as “a process which promotes the co-ordinated development and management

of water, land and related resources, in order to maximise the resultant economic

and social welfare in an equitable manner without compromising the sustainability

of vital ecosystems”. [GWP Technical Advisory Commitee, 2000]

Four main principles, known as the Dublin Principles, underpin IWRM:

• Fresh water is a finite and vulnerable resource, essential to sustain life, devel-

opment and the environment.

• Water development and management should be based on a participatory ap-

proach, involving users, planners and policymakers at all levels.

• Women play a central part in the provision, management and safeguarding of

water.

• Water has an economic value in all its competing uses and should be recognised

as an economic good.

To develop long-term strategies that recognise impending challenges and adhere

to the Dublin Principles, water companies around the world have been exploring

various options with regards to the formulation of such plans. In particular, every 5

years, UK water utilities are obligated to provide a 25-year plan that aims to address

the issue of growing demand [UK Environment Agency, 2017]. Thames Water in

South-Eastern UK have undertaken the construction of a mathematical model that

aims to find the optimum long-term investment strategy.

A stochastic sampling and optimisation framework for Water Resources Plan-

ning (WRP) has been developed by ICS Consulting (UK) and the Department of

Engineering Science at the University of Auckland. However, the modelling ap-

proaches explored in this framework result in very slow solution times when solving

for a large number of potential demand scenarios and corresponding restrictions

(that are implemented if the plan does not provide enough supply for a particular

scenario). This project aims to re-formulate particular parts of the existing opti-

misation model (a mixed integer programme) in order to reduce the time taken to

solve the problem.

2 Background

2.1 Thames Water and ICS Consulting (UK)

Thames Water, a UK water supply company, have shared their Water Resource

Management Plan (WRMP) data with ICS Consulting (UK) (ICS) to assist ICS

in their development of a framework for generating good WRMPs that that cater

to the peculiarities of their network. In turn, ICS have enlisted the Department of



Engineering Science (DES) at the University of Auckland (UoA) to assist with the

modelling/optimisation part of the project.

To produce a WRMP, Thames Water utilises available data to forecast future

supply and demand while incorporating uncertainty into these projections. A given

system is then taken and tested against these estimates to highlight any supply

deficits. Thames Water then attempts to bridge the gap between supply and demand

by incorporating options or restrictions into its planning horizon. UoA DES has

changed this approach to include uncertainty directly in the decision making for

options and restrictions:

1. Use Monte Carlo sampling to generate scenarios of future supply, demand and

the associated uncertainty;

2. Calculate supply deficit for each scenario;

3. If all deficits = 0 then STOP;

4. Find best options and restrictions for dealing with deficit across all scenarios.

While the overall process is very broad in scope (including statistical models of

supply/demand and Monte Carlo sampling), this project focuses on step 4 – finding

the best options and restrictions to deal with deficit across all scenarios.

2.2 Demand and Supply Options

At its core, the model revolves around balancing water supply and demand for a

number of periods into the future. This can be done through the use of either supply

and/or demand management options [Whitelock-Bell, 2016] such as:

• Leakage reduction;

• Water imports;

• Desalination plants.

In addition to the above, Thames Water could utilise emergency measures to re-

duce public water usage over a short period of time – these are known as restrictions.

Unlike options, restrictions are temporary in their effect and thus require separate

variables and constraints to model them properly. Additionally, restrictions are not

linearly costed – restriction cost increases non-linearly as its duration and frequency

of use increase.

Since non-linearity presents significant computational challenges, this property

of restriction costs has been the focus of a large amount of research that has been

undertaken at the University of Auckland. This previous work will be summarised

next in Section 3.

3 Previous Model Developments

ICS Consulting (UK) (ICS) are not yet satisfied with their existing solutions for

optimising water management for Thames Water. As such, several models have

been developed at the University of Auckland in order to try and improve both



solution quality and speed. An initial model has been developed, but struggled

to solve the problem within an acceptable time frame. Subsequent work focused

mainly on trying to achieve reasonable solution times that could be implemented in

a commercially viable package to be used by ICS.

3.1 Base Model

This section is summary of work undertaken by Dr. Michael O’Sullivan and Assoc.

Prof. Cameron Walker [O’Sullivan and Walker, 2016]. They developed a model that

produces a least-cost WRMP that satisfies a variety of constraints including meeting

level of service targets for restrictions with a given level of confidence. Please note

that only the most relevant parts of the model have been presented in this paper.

3.2 Useful Abbreviations & Concepts

• Sample – a description of future demand and supply generated by Monte Carlo

Sampling.

• Zone – A Water Resource Zone, a discrete planning unit with self-contained

demand and supply.

• Restriction – a temporary measure to reduce water usage (see Section 2.2).

• LoS – Level of Service. For restrictions, this refers to how often it can be

enforced in the planning period.

3.3 Definitions and Notations

Sets and Parameters
1, 2, . . . , T = the periods in the planning horizon
Z = the zones in the planning area
Ω = samples used in planning
J = the set of possible restrictions

Variables
ejz ∈ {0, 1} = restriction j is enforced in zone z;
0 ≤ pωjzδλ ≤ 1 = SOS convexity variable for restriction j in zone z

under sample ω. (δ ∈ ∆j and λ ∈ Λj);
qωjzδλ ∈ {0, 1} = SOS binary variable for restriction j in zone z

under sample ω. (δ ∈ ∆j and λ ∈ Λj);

3.4 Non-Linearity

Through extensive economic research ICS consulting have determined that the costs

resulting from restrictions are best modelled with a non-linear function that increases

exponentially with both duration and level of service as shown in Figure 1. A

conventional approach to tackling this issue is to discretise the non-linear function

into a grid of points. From this grid we can construct piecewise approximations

to the non-linear function by employing fractional weighting variables (denoted by

pjtωδλ) that make up a weighted sum of any square in the grid. Because these

variables essentially create a convex combination of grid points, they are henceforth

referred to as convexity variables.

We can observe that there is a certain concavity to the surface. If the model

could choose any points across the grid, it could easily ”cheat” and produce a point

that lies below the actual surface.



(a) Restriction Cost: Front View (b) Restriction Cost: Side View

Figure 1: Piecewise linear approximations of the aforementioned costing functions.

Note the diagonal concavity when moving from LoS = 0, Duration = 6 to LoS = 1,

Duration = 0.

3.5 SOS Formulation

One way of selecting a convex combination [Beale and Tomlin, 1970] is to simply

select a square of 4 neighbouring points. A natural way to accomplish this in an

Integer Programming context would be to create a grid of 0-1 variables that can be

used to toggle the weighting variables on and off. This approach is called a Special

Ordered Set of Order 2 (or SOS-2 for short) and was the initial approach used by

O’Sullivan and Walker. These variables are denoted by qωjzδλ.

To control these binary variables, we need both the standard master-slave con-
straints and a mechanism through which we force the variables to be used in a 2-by-2
square, in this case n̂, the set of all ”non-neighbours” of a point:

pjωδλ ≤ qjzωδλ, j ∈ J, z ∈ Z, ω ∈ Ω, (δ, λ), λ ∈ Λj , δ ∈ ∆j (1)∑
δ∈∆j

∑
λ∈Λj

qjzωδλ ≤ 4ejz, j ∈ J, z ∈ Z, ω ∈ Ω (2)

∑
(δk̂,λl̂)∈N̂jωδkλl

qjzωδk̂λl̂ ≤ |N̂jωδkλl |(1− qjzωδk,λl), j ∈ J, z ∈ Z, ω ∈ Ω, δk ∈ ∆j , λl ∈ Λj (3)

3.6 Slice Formulation

In a previous part IV project in 2016 [Whitelock-Bell, 2016], Lucy Whitelock-Bell

deduced that there are regions in each restriction’s cost space in which the cost

function is strictly convex. Thus, as long as we restrict out search to these regions,

otherwise known as slices, any given convex combination of points will provide an

accurate approximation of the actual cost.

When implemented, the slice formulation resulted in n+m−2 binary variables for

a n×m restriction grid, being a substantial improvement over the SOS formulation

in terms of the number of variables in the model. The core mathematical concept

of the slice model is described as follows [Whitelock-Bell, 2016].

Θωjz = Set of slices spanning cR(j, ω, z, δ, λ);

oωjzθ = Slice binary variable for slice θ ∈ Θωjz for restriction j in zone z under sample ω



Intuitively, only one slice per restriction in each zone under each scenario may be

turned on, if the restriction is being used in that zone:∑
θ∈Θωjz

oωjzθ ≤ ejz, j ∈ J, z ∈ Z, ω ∈ Ω (4)

The SOS convexity variable at every point must be less that or equal to the sum of

slices that overlap that point:

pωjzδλ ≤
∑

(δ,λ)∈θ

oωjzθ, j ∈ J, z ∈ Z, ω ∈ Ω (5)

3.7 Slice Echelon

Following Whitelock-Bell’s 2016 part IV project, O’Sullivan and Walker have un-

dertaken further work to speed up the model [O’Sullivan and Walker, 2016]. Among

these contributions is “echelon form” – forcing the model to use binary variables in

a certain pre-determined order, improving branching during the branch-and-bound

tree. By introducing a specific order to the slices, we can reformulate the sets and

constraints in the following way:

oωjzθ = θth slice binary variable for restriction j in zone z under sample ω (θ ∈ Θωjz)

To enforce the echelon form, we must first set each binary variable to be less than

or equal to the one before it

oωjzθ ≥ oωjzθ+1, j ∈ J, z ∈ Z, ω ∈ Ω, θ < |Θωjz| (6)

Then, we must adjust the master/slave constraints accordingly.

pωjzδλ ≤
∑

(δ,λ)∈θ

(oωjzθ − oωjzθ+1), j ∈ J, t = 1, 2, ..., T, ω ∈ Ω, θ < |Θωjz| (7)

pωjzδλ ≤
∑

(δ,λ)∈θ

oωjzθ, j ∈ J, t = 1, 2, ..., T, ω ∈ Ω, θ = |Θωjz| (8)

To most effectively control large subsets of slices at once, we can aim to always

branch on the “most middle” variable, called bisection branching.

In addition to testing on the existing techniques presented in this section, our

research provides some new methods aimed at improving the MIP performance.

These methods will be presented next in Section 4 before all techniques/methods

are compared in Section 5

4 New Methods

Although a large amount of work has aimed to improve the solution time of the

model, none of the approaches have been able to best the SOS formulation [Whitelock-

Bell, 2016]. As a result the optimisation model has been unable to achieve anything

resembling reasonable solution times for the real-world case of 100 samples being

examined. The main reason for the slow solution times is the interaction between



the large number of scenarios and the complicated restriction costs, causing multi-

plicative growth as both increase in number.

When an initial examination of previous work was conducted and the results

of the slice formulation analysed, it seemed that the difficulty of the restriction

modelling lies not so much in the number of variables that arise, but rather in some

underlying property of the problem that makes it more suited to specific solution

methods. Thus the goal of this project became very broad – simply finding something

that works better than the existing solution.

4.1 Battleship Formulation

The first approach I tried preserved the square-based selection process featured in

the SOS formulation and improved the way in which the squares are selected. I

realised that it is possible to introduce a 2D coordinate system for specifying which

square should be selected - very similar to a game of battleships where each players

needs to guess the coordinates of the correct points. We can select an allowable

range for both level of service and the duration of a restriction - both constrained

between two neighbouring values. While this reduces the number of variables, the

downside of this 2D selection would potentially be apparent during the branch and

bound process. If our 1-branch corresponds to a chosen 2 × 2 square, then two 1-

branches are needed to narrow down a convex solution in the battleship formulation

compared to one 1-branch required by the slice method.

The formulation was very similar to the slice formulation, except the ”slice”
variables and constraints needed to be implemented in two directions instead of one.

Θdωjz = Set of slices spanning cR(j, ω, z, δ, λ) in the duration direction;

odωjzθ = Slice duration binary variable for slice θ ∈ Θdωjz and restriction j in zone z under sample ω

Θlωjz = Set of slices spanning cR(j, ω, z, δ, λ) in the LoS direction;

olωjzθ = Slice LoS binary variable for slice θ ∈ Θlωjz and restriction j in zone z under sample ω

Again, only one restriction combination may be used:∑
θ∈Θdωjz

odωjzθ ≤ ejz, j ∈ J, z ∈ Z, ω ∈ Ω (9)

∑
θ∈Θlωjz

olωjzθ ≤ ejz, j ∈ J, z ∈ Z, ω ∈ Ω (10)

The SOS convexity variable at every point must be less that or equal to the sum of

slices overlapping that point for both duration and level of service slices.

pωjzδλ ≤
∑

(δ,λ)∈θ

odωjzθ, j ∈ J, z ∈ Z, t = 1, 2, ..., T, ω ∈ Ω (11)

pωjzδλ ≤
∑

(δ,λ)∈θ

olωjzθ, j ∈ J, z ∈ Z, t = 1, 2, ..., T, ω ∈ Ω (12)

4.2 Forcing Cut

While developing the new formulations, one concept that all methods share in com-

mon became apparent. If a solution is integer feasible, then a combination of weights



producing a point close to the true cost is selected. However, the reverse does not

hold true, i.e., if a correctly costed combination of weights is selected the solution

may not be integer feasible, increasing the time taken to solve the problem. Thus I

set out to come up with a solution to this phenomenon and try to force the model

to become more naturally integer, i.e., remove fractionality from the solution space.

I introduced a cut that “forces” the slice binary variables in any formulation to sum

to 1 if the weights selected are on or above the surface, hence the term “Forcing

Cut”. To demonstrate this, let us return to the slice formulation, where this cut is

most natural.

The sum of convexity variables in any given slice θ ∈ Θωjz must be less than or

equal to the sum of all the binary variables for slices that overlap with θ, including

θ itself:∑
(δ,λ)∈θ

pωjzδλ ≤
∑

β∈Θωjz |∃(δ,λ)∈β ∩ θ

ojωβ, j ∈ J, z ∈ Z, ω ∈ Ω, θ ∈ Θωjz (13)

An equivalent constraint can be applied to battleship formulation, but needs to

be modified slightly for echelon form.

4.3 Split Slices

Further pursuing the idea of closely tying cost-convex solutions to integrality, my

next approach was to break up the convex variable tables into separate sets – one

for each slice. This removes all overlap between slices by creating duplicate points

for every convex variable that appears in more than one slice. While introducing

more linear variables into the model, this approach means that the value of a slice

binary variable can be bounded below by the sum of the slice’s convexity variable,

so convex solutions within a slice force integer slice binary variables. To implement

this approach, new tables were created in the database and some constraints needed

slight tweaking, namely (5) , (7) and (8).

Replacing (5) by (14) gives a constraint that acts as both a master/slave con-

straint and a cut that enforces a tight relationship between convexity and integrality.∑
(δ,λ)∈θ

pωjzδλ ≤ oωjzθ, j ∈ J, ω ∈ Ω (14)

Similarly, echelon constraints (7) and (8) need to be modified in the following

way: ∑
(δ,λ)∈θ

pωjzδλ ≤ oωjzθ − oωjzθ+1, j ∈ J, ω ∈ Ω, θ < |Θωjz| (15)

∑
(δ,λ)∈θ

pωjzδλ ≤ oωjzθ, j ∈ J, ω ∈ Ω, θ = |Θωjz| (16)

The next chapter aims to compare the different approaches outlined in this sec-

tion and Chapter 3 of the report.

5 Comparing the Formulations

Throughout the development of this model, numerous ways of formulating the cost

functions have been developed. However, the effectiveness of these methods relative



to one another has not been fully explored in detail. Thus it has been difficult to

make any sort of meaningful conclusions or to guide the development of the model

in a dedicated way.

The formulations to compare are as follows, with a variety of potential improvements

available for each formulation:

• Original SOS formulation;

• Slice formulation;

• Square formulation;

• Battleship formulation;

• Split formulation.

The standard way of measuring the performance of a mixed integer program is

to look at the solution times. However, the problems presented here are too large

to be solved using the computational resources available in a reasonable amount of

time. As such, to measure the relative quality of each formulation, we run all the

problems for four hours and measure the optimality gap.

All available solution methods were first tested on a reduced problem of 20 sce-

narios. This allowed us to isolate good formulations that can then be evaluated on

a range problem sizes – 5, 10, 15, 20, 25. All runs use 15 options, 5 restrictions and

3 zones.

Through this testing framework we have selected the following formulation for

extended testing:

• F1 – Slice echelon bisection, the baseline existing formulation;

• F2 – Slice echelon with bisection and forcing cuts;

• F3 – Slice formulation with the forcing cut;

• F4 – Battleship echelon formulation with bisection and forcing cut;

• F5 – Split formulation with slice echelon and bisection branching.

The results of evaluating these formulations are presented in Figure 2.

To investigate the importance of the source data, i.e., which samples are used,

was for the 10 and 15 scenario performance, we can repeat these tests with prob-

lems constructed from alternative datasets. Initially, scenarios from the 20 sample

problem were used to construct the data for the 15 scenario problem and, similarly,

the 10 sample problem was created from the 25 sample problem. For the next set of

results, the 20 scenario problem was used to create the 10 sample problem and the

25 scenario problem was truncated to solve the 15 scenario problem. The differences

between the two sets of results are highlighted in Table 1. In this table we compare

the performance of formulations relative to one another by ranking them for each

set of samples. In addition, the difference in the optimality gap between each set of

samples at the end of the solve is presented to highlight the impact on individual

formulations.



Figure 2: Initial testing results

Formulation

Rank Gap change (%)

10 Scen. 15 Scen.
10 Scen. 15 Scen.

Set 1 Set 2 Set 1 Set 2

F1 1 3 2 2 +1.2 +0

F2 3 2 1 5 -0.6 +10.8

F3 4 4 3 3 +0.8 +2.9

F4 5 5 5 4 +1.9 -0.1

F5 2 1 4 1 -1.3 -2.7

Table 1: Ranked results comparing effects of individual scenarios

The next section aims to obtain meaningful conclusions from the data presented in

this paper.

6 Discussions

6.1 Final Results

Before any comments are made regarding formulation quality, a point regarding

the development environment needs to be made. The virtual machine used for this

project had limited computational power. In addition to this, the cloud resources

allocated to the machine are not constant – the VM may receive additional process-

ing capability if the total demand on the server is fairly low. The impact of the

virtual environment is that direct comparisons between two solves is not conclusive,



as they may not be utilising the same resources.

The first aspect of the results in Figure 2 we can comment on is the consistency of

each formulation. When considering the effect of new developments on the solution

quality, it is clear that the forcing cut is almost always beneficial to the solution

times, no matter the formulation. F5, the split formulation, also seems to perform

relatively well under certain conditions, but more investigative work needs to be

undertaken to understand the efficacy of this approach.

When designing the experiments to test the formulations, one broad assumption

was made: that the individual scenarios have no effect on the solution quality; the

performance of a formulation is dictated exclusively by the problem size. We can

see from Table 1 that this is clearly not the case. When the specific scenarios were

changed, some formulations improved while others deteriorated although the size of

the problem remained constant. Because individual scenarios affect the performance,

single runs of smaller problem sizes are not sufficient to fully compare different

methods.

6.2 Future Work

Before final conclusions can be made about the formulations, more testing needs to

be done. A standard computer with additional memory and much higher processing

power needs to be used so that it may be possible to actually run the solves to

completion. This will provide us with a much better metric that can be used to

compare formulations. To fully narrow down the best way of solving the problem,

different scenario samples of the same size would need to be run in order to get a

clear of picture just for one problem size. In perfect conditions, a good test would

be repeating this process across three to four problem sizes and removing the time

limit to record the final solution time.

It would seem at this point that any further improvements in the restriction

space of the model would need significant reformulation of the restriction tables. As

such, it would be most likely better to shift development attention to other parts

of the model. There is potential work that can be done across scenarios, improving

the way restriction point variables are handled as the number of scenarios increases.

Additionally, decomposition approaches across scenarios can also be utilised in an

attempt to speed up solution times.

7 Conclusion

The system developed by ICS Consulting (UK) in conjunction with the University

of Auckland was, and still is, suffering from slow solution times, impeding develop-

ment. At the outset of this project, the goal was somewhat broad – finding methods

to improve solution times by changing the way restriction cost modelling worked.

Some of the newly developed techniques provide a positive impact on the solution

times. The forcing cut is a good addition to the repertoire of techniques available

when solving this problem; it is applicable to a range of methods and usually im-



proves the optimality gap. The split formulation also carries some promise, but

warrants further testing under different conditions.

After extensive testing was conducted, it became clear that problem size was not

the only factor affecting formulation performance. Individual scenarios played a big

role in how fast a particular method was able to reduce the optimality gap, which

is a crucial piece of knowledge for further advancement of the model. Using this,

we are able to effectively guide future development by constructing a much more

effective testing framework.
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