
Using Neighbourhood Search to Solve

Generalised Staff Rostering Problems

I.D. Cleland, A.J. Mason, M.J. O’Sullivan

Department of Engineering Science

University of Auckland

New Zealand

icle701@aucklanduni.ac.nz

Abstract

The Staff Rostering Problem involves optimising the assignment of staff to shifts,

whilst fulfilling rules associated with these assignments. There are significant time-

saving benefits to solving Staff Rostering Problems automatically and so there have

been many attempts over the years to solve these problems with optimisation and

heuristics. However, these problems are very difficult to solve automatically; they

are NP-Hard, regularly have a very large number of variables, have a non-linear or

multi-objective cost function, and are tightly constrained.

In this paper, we will be demonstrating our preliminary investigations into several

novel algorithms which involve a hybrid of column generation and local search.

Key words: Column Generation, Dantzig Wolfe, Matheuristics, Neighbourhood

Search, Staff Rostering, Scheduling, Nurse Rostering, VNS, Local Branching

1 Background

1.1 Staff Rostering Problems

The Staff Rostering Problem is a problem within the field of Operations Research

(OR) involving optimising the assignment of staff to shifts, whilst fulfilling rules

(e.g. limited numbers of weekends worked, limited night shifts in a row, minimum

hours worked) associated with each staff’s roster-line (the set of shifts to which a

staff member is assigned) and satisfying the demand for each shift. There have been

extensive reviews around this subject by Ernst et al. on generic staff rostering (Ernst

et al. 2004) and Burke et al. and Cheang et al. focused on general nurse rostering

(Burke et al. 2004) (Cheang et al. 2003). It is usually solved for a set period of time,

with several different types of shifts differentiated by their start time, finish time,

demand and skill requirement. Some common applications of staff rostering include

crew scheduling (the process of assigning crews to operate transportation systems),

nurse scheduling, and call center scheduling. The rules for making rosters for each of

these applications differ significantly so most papers focus on just one application.

Figure 1 shows a typical roster solution to a staff rostering problem. In this staff

rostering problem example, we assume that each staff member can only have one



Figure 1: Staff Rostering Problem

shift per day, which is the type of problem we are attempting to solve during this

paper.

Until recently, most staff rostering problems were done manually, which is very

time consuming and means the quality of the roster is difficult to assess. There are

huge time-saving benefits to solving these problems automatically and so there have

been many attempts over the years to solve these problems using both optimization

and heuristics. However, these problems are very difficult to solve automatically;

they are NP-Hard (Richard and Karp 1971), regularly have a very large number of

variables, a non-linear or multi-objective cost function, and are tightly constrained.

1.2 Original Software

This paper will focus on an improvement to the original software called Genie++

(Dohn and Mason 2013) (Mason and Smith 1998) which was developed for the

purpose of generalized staff rostering. Genie++ uses nested column generation and

generic programming to be able to solve a broad range of staff rostering problems

quickly.

Column generation is an algorithm used to solve large linear programs (LPs)

efficiently where there are a very large number of variables. Instead of solving the

entire LP, only a subset of the variables (columns) are included at once as a restricted

LP. Then, negative reduced cost variables are generated in a separate subproblem

(multiple generation methods are used including dynamic programs (DPs), mixed

integer programs (MIPs), constraint programs (CPs) etc.) and added to the re-

stricted LP which is re-solved until no more negative reduced cost columns can be

generated and the solution is optimal to the original LP. For more information, the

book Column Generation (Irnich, Desaulniers, and Others 2005) is a comprehensive

review of most modern techniques.

The following model shows the set partitioning formulation we use to generate

rosters from a limited pool of roster-lines (ie columns specifying potential sets of

shifts and days off for a given employee).

Indices

i = shift index,



j = employee roster-line (J is the set of all roster-lines),

k = employee index.

Parameters

cj = cost of employee roster-line j;

Ai,j = 1 if employee roster-line j fulfills demand for shift i, 0 otherwise;

Ek,j = 1 if roster-line j is associated with employee k, 0 otherwise;

bi = demand for each shift i;

si = maximum number of additional employees that can do shift i after the

demand has been reached.

Decision variables

λj = 1 if an employee does roster-line j, 0 otherwise;

yi = surplus variable.

Staff Rostering Mixed Integer Program (SRMIP)

Minimize
∑

j∈J cjλj

s.t.
∑
j∈J

Ai,jλj − yi = bi ∀i ∈ Shifts (1)

∑
j∈J

Ek,jλj = 1 ∀k ∈ Employees (2)

λj ≥ 0, Integer

0 ≤ yi ≤ si.

Explanation The objective is to minimize the total cost of the roster which is the

sum the costs of each employee’s roster-line. The first set of constraints (1)

ensure that the demands for each shift are met. The generalised upper bound

(GUB) constraints (2) ensure each employee has exactly one roster-line.

The Genie++ column generation subproblem consists of a nested dynamic pro-

gram. Genie++ models the roster-lines of each employee using nested building

blocks called entities. These entities are demonstrated on Figure 2. There are five

main entities: a shift, an on-stretch, an off-stretch, a work-stretch and the roster-line

itself. A shift is the basic building block. An on-stretch is a sequence of shifts on

consecutive days (Genie++ currently makes the assumption that only one shift is

done by one employee per day). An off-stretch is a set of consecutive days off. A

work-stretch is made with one on-stretch and one off-stretch with no days in between

the end of the on-stretch and the start of the off-stretch. A roster-line is made up

of a series of consecutive work-stretches.

Each entity has certain attributes, such as the number of weekends off in an

off-stretch or the number of hours worked in an on-stretch. Each attribute has rules

for how the value of the attribute is initialized from the value of the attributes of

the first sub-entity added (e.g. a new on-stretch is initialised by one shift; the start

time attribute value for the new on-stretch is equal to the start time attribute value

for the first shift) and how the value accumulates as more sub-entities are added

(e.g. the total number of weekend days worked in the onstretch is incremented by

1 if the added shift is on a weekend day). There are also rules defined based on

these attribute values which are either strictly enforced (e.g. no working during any



Figure 2: Genie++ System

weekend) or just add a cost to the roster-line objective function if broken (e.g. add 1

to the cost of the roster-line for each weekend worked). The attributes and rules can

be modeled in many different ways which makes Genie++ very flexible in modeling

problems.

To solve the nested dynamic program and generate roster-lines, two nested dy-

namic programs (DPs) are solved. The first DP is used to generate and price (i.e.

compute reduced costs for) all feasible, dominant (has the lowest reduced cost out of

all entities with the same attribute values) on-stretches. Then an enumeration pro-

cess generates and prices all feasible, dominant work-stretches by combining every

on-stretch that we have generated with any feasible off-stretch for that on-stretch.

The second DP is used to combine work-stretches to generate and price all feasible,

dominant roster-lines. By solving the DP, in a nested way, many roster-lines that

won’t be optimal or feasible are removed by the dominance or feasibility checks per-

formed on sub-entities before the roster-line is priced, which makes the subproblem

much more efficient in finding the optimal roster-line.

To speed up the column generation subproblem, Genie++ uses generic program-

ming which involves using the C++ Boost Preprocessor library functionality to write

individualized code for the model’s subproblem. This individualized code dictates

how feasibility and dominance checks are performed for each entity based on its

attributes and how attributes are initialized and accumulate. The code is generated

directly from the model description which is currently in the form of a C++ header

file. An example of some of the model description code can be seen in Figure 2.

This functionality improves the speed of the dynamic program significantly as only

the necessary calculations for the specific subproblem are made. This functionality

also means the code is compile-time optimised by the C++ compiler which makes

it significantly faster.

Genie++ was implemented using COINOR’s Branch, Cut and Price (BCP) li-

brary which is a parallel framework for handling column generations problems. How-

ever, for our tests, we will be using a faster, custom column generation library which

we have developed for efficient testing of column generation based algorithms.



One of the core limitations of Genie++ in its original implementation was that it

was still slow for some types Staff Rostering Problems. As we want it to be used for

the largest variety of Staff Rostering Problems possible, we wish to develop multiple

solve methods which can be used on different classifications of problems so that

Genie++ can consistently solve Staff Rostering Problems quickly.

1.3 Neighbourhood Search in Column Generation

One method of improving the solve times for some classifications of Staff Rostering

Problems is by using Variable neighbourhood Search within the column generation

framework.

Variable Neighbourhood Search (VNS) is an extension of standard local search.

Local Search involves searching a subset of the solution space in the neighbourhood

of a feasible, integer solution. A neighbourhood is defined as all the solutions which

only differ by a defined small aspect (e.g. any one shift swapped in any one of the

roster-lines in a roster solution) from the original solution.

In VNS, the local optimum is found via a local search, then the neighbourhood is

changed and the search continues until another local optimum is found until no better

solution can be found from changing the neighbourhood. Jumps are then performed

by randomly changing one part of the best solution found so far and exploring the

multiple neighbourhoods again. A recent, detailed exploration of applications and

methods of VNS was performed by Hansen (Hansen, Mladenovi, and Moreno Perez

2010). VNS can not only be used to find feasible upper bounds to the branch and

bound tree but can also be used to improve the speed of solving the relaxed problem

in a MIP (Hansen et al. 2007).

VNS is referenced several times in the Staff Rostering Problem literature. Burke

et al. establish a neighbourhood of various swaps including 1-swaps and 2-swaps

within a roster-line as well as swapping whole roster-lines. This is used to improve

solutions from a MIP model which isn’t initially solved to optimality (Burke, Li,

and Qu 2010). Rahimian et al. use a similar but larger neighbourhood than Burke

et al. and also performs jumps in their VNS by using a MIP to optimise a small

number of employees’ roster-lines in the current best feasible solution to hopefully

produce a new solution with a better local optimum. Rahimian et al.’s VNS only uses

simple greedy heuristics to attain starting solutions and is comparable to Burke et al.

column generation framework on many benchmark instances (Rahimian, Akartunali,

and Levine 2017). Several mathematical models have also been used to explore

neighbourhoods. Santos et al. use a variation on VNS called Variable Neighbourhood

Descent (VND). VND involves fixing a certain number of variables in the formulation

to be equal to corresponding variables in an incumbent solution and solving to

integer optimality, then changing the neighbourhood by increasing or decreasing the

number of variables being fixed until no further improvements can be made or a time

limit is reached. Santos et al. perform VND on staff rostering problems by fixing

both shifts and days to the same as those in an incumbent. Santos et al. initially

fixed everything except one day or shift and unfixed more variables every iteration of

their VND (Santos et al. 2016). Smet et al. use three neighbourhoods in their search:

VND on each day as was used by Santos, VND on each individual employee, and

VNS using local branching which involves restricting the Hamming distance (sum of

differences in variable values between LP solution and an incumbent solution) with

a constraint, solving the MIP to optimality, then changing the maximum Hamming



distance and repeating the process (Smet, Ernst, and Vanden Berghe 2016). It

should be noted that neither Santos et al. nor Smet et al. use a column generation

decomposition with their VNS methods and are both using 0-1 MIP formulations

with these neighbourhood searches.

Although VNS and VND are referenced frequently with both swapping and mov-

ing heuristics, and in solving 0-1 MIP formulations (Hanafi and Todosijević 2017),

(Hanafi et al. 2015), there has not been much discussion with regard to using these

methods within a column generation solver and consequently also within a column

generation based staff rostering solver. Hansen et al. propose using local branching

as a variable neighbourhood with VNS for an effective way to explore large neigh-

bourhoods around incumbent solutions quickly (Hansen, Mladenović, and Urošević

2006). However, to our knowledge, this has not been applied to general column gen-

eration. In this paper, we experiment with this novel column generation technique

by both using Local Branching in the LP and by restricting the column generator

itself.

2 Implementation

2.1 Variable neighbourhood Search in Genie++

We implemented a simple variable neighbourhood search algorithm shown below

(Algorithm 1). Each local search neighbourhood is defined as all rosters which

are k distance (where distance is the maximum amount of changes allowed from

the original roster) from the incumbent roster. Local Search is performed on a

given incumbent roster by solving the Staff Rostering Problem using Genie++ with

constraints in the Linear Program or in the column generation subproblem to restrict

the solutions to be k distance from the incumbent roster.

Local search is performed with a given neighbourhood until no improvements to

the incumbent roster can be made. The neighbourhood is then increased by kstep
until the size of the neighbourhood, k, reaches the given maximum neighbourhood

size, kmax.

Algorithm 1 Basic Variable neighbourhood Search

1: procedure VNS(x, kmin, kmax, kstep)

2: k ← kmin

3: x′ ← x

4: while k ≤ kmax do

5: while f(x′′) < f(x′) do

6: x′ ← x′′

7: x′′ ← LocalSearch(x′, k)

8: if f(x′) < f(x) then

9: x← x′

10: k ← kmin

11: else

12: k ← k + kstep

13: return x

We experimented with three separate neighbourhoods within Genie++ all of

which take one parameter, k. These are: 1) Local branching with employee roster-



lines, 2) Local branching with employee-shift variables, 3) Column-wise Restricted

neighbourhood Search. We next will discuss these in detail.

2.2 Local Branching - Employees

Our first type of Local Search uses Local Branching, which involves adding the

constraint shown below (3) to our SRMIP formulation. This constraint forces a

minimum number of roster-lines in the original incumbent roster to be in any new

rosters produced by this Local Search method. In this case, the neighbourhood

distance parameter, k, describes the number of roster-lines which can be different

from those in the original incumbent roster.

Parameters

αj = 1 if roster-line j is in the incumbent solution, 0 otherwise,

n = total number of employees,

k = neighbourhood distance parameter.

Additional Constraints ∑
j∈J

αjλj ≥ n− k (3)

This method of local branching is the easiest to implement as no changes to our

column generator, nor any dual manipulation, are required for this formulation.

2.3 Local Branching - Employee-Shift

The second type of Local Search also uses Local Branching but instead involves

adding the constraint shown below (4) to our SRMIP formulation. This constraint

imposes a limit on the number of employee-shift variables that can be different from

the original incumbent roster in any new rosters produced by this Local Search

method. An employee-shift variable represents whether an employee does a partic-

ular shift in the roster. As such, when generating new columns within the local

search, the roster-line needs to be compared with the same employee’s roster-line

in the original incumbent roster and the number of shift differences is calculated

and added to the model as the parameter βj for roster-line j. k is the maximum

permitted for the total sum of these differences over the whole roster.

Parameters

βj = total number of shift differences compared to incumbent roster-line,

k = neighbourhood distance parameter.

Additional Constraints ∑
j∈J

βjλj ≤ k (4)

No changes are required in our column generator for this formulation. However,

there are complexities with regards to the dual for the additional constraint. Since

each column is built one shift at a time, in order to find the column with the optimal

dual cost, the dual for the additional constraint must be added to the column each



time there is either a shift being added on some d that is different from the incumbent

for the employee or if the column generator isn’t adding a shift that is done by the

employee in the incumbent.

We have not found any publications that have used this same technique for

rostering or even column generation. However, it poses a significant risk of increased

fractionality and hence longer solve times due to the additional constraint not having

binary coefficients.

2.4 Column-wise Restricted neighbourhood Search

The third type of Local Search involves putting restrictions within the column gen-

erator itself. A new attribute is tracked in the dynamic program called Incumbent

Resource which tracks the total shift differences in each entity (shifts, on-stretches,

off-stretches, work-stretches, roster-lines) from entities in the incumbent roster. Any

entity generated with more than k changes from the incumbent roster-line of the

same employee is discarded. So in this case, k represents the maximum number of

employee-shift variable differences from the incumbent for each employee’s roster-

line.

Figure 3 shows the accumulation of the Incumbent Resource in the Column Gen-

erator. If a shift is added to the on-stretch which isn’t part of the incumbent roster-

line, such as the morning shift in the example, the Incumbent Resource attribute is

incremented by 1. This attribute is limited by k when generating roster-lines.

2.5 Experiments

In order to test our various Local Search strategies for effectiveness, we have initially

used the International Nurse Rostering Competition (INRC) test problems.

The INRC problems are of 3 different lengths: ‘sprints’ which required rostering

10 nurses on for 4 weeks with 4 shift types (11 seconds were allowed in the compe-

tition to solve these), ‘mediums’ which required rostering 30 nurses on for 4 weeks

with 4 different shift types (11 minutes were allowed in the competition to solve

these) and ‘longs’ which required rostering 49 nurses on for 4 weeks with 5 different

shift types (11 hours were allowed in the competition to solve these).

We performed 4 tests on each of the INRC problems. The first was a basic solve

with standard Branch, Cut, and Price. This test is intended to be a benchmark with

which to compare the other methods.

The other 3 tests followed the same protocol. An initial feasible integer solution

was generated using a simple construction heuristic. Then each Local Search algo-

rithm is called with a different parameters (kmin, kstep, and kmax) for each algorithm.

Different parameters were used for each experiment because they have a very differ-

ent effect on each algorithm. For example k = 1 for employee Local Branching has

a much larger effect on the solution than k = 1 for employee-shift Local Branching

since changing an employee changes many employee-shift variables.



Figure 3: Accumulation of Incumbent Resource Attribute



3 Results

Benchmark
Standard Emp LB Emp-Shift LB Col Restricted

% Error Time(s) % Error Time(s) % Error Time(s) % Error Time(s)

Medium01 0 391 12 4423 N/A N/A 0 586

Long01 0 311 9 7636 N/A N/A 0 996.604

Table 1: Accumulation of Incumbent Resource Attribute

The results of our tests can be seen in the table above. The results are merely

preliminary and limited at this stage as we are currently in the process of doing

experiments and refining our software for this research.

The preliminary results seem to show that Column-wise Restricted Local Search

is significantly better than Employee Local Branching. However, none of the Local

Search algorithms have yet been refined enough to beat the times of our original

BCP system.

The test data we have been using has also been shown to only be one type of

Staff Rostering Problem as all the INRC problems are modeled very similarly and

behave in similar ways when being solved.

Furthermore, the tests we have been performing have none of the integrated

heuristics that we have built into Genie++ in use, so are purely for comparison

purposes against the Local Search methods and not for benchmarking Genie++

against other INRC benchmarks.

4 Conclusions

We have developed a powerful system for using VNS with multiple column generation

based local search methods to solve Staff Rostering Problems. These methods could

potentially be more efficient than standard column generation for some problem

types.

However, at this stage, no firm conclusions about the nature of column generation

based local search can be made as the algorithm and parameters have not been

refined as of yet and only one type of Staff Rostering Problem has been tested.

Nevertheless, these approaches appear to be novel and could potentially be a good

contribution to both the Staff Rostering literature and column generation literature

if they are especially effective.

References

Burke, Edmund K., Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik

Van Landeghem. 2004. “The state of the art of nurse rostering.” Journal of

Scheduling 7 (6): 441–449.

Burke, Edmund K., Jingpeng Li, and Rong Qu. 2010. “A hybrid model of integer

programming and variable neighbourhood search for highly-constrained nurse

rostering problems.” European Journal of Operational Research 203 (2): 484–

493.



Cheang, B., H. Li, A. Lim, and B. Rodrigues. 2003. “Nurse rostering problems

- A bibliographic survey.” European Journal of Operational Research 151 (3):

447–460.

Dohn, Anders, and Andrew Mason. 2013. “Branch-and-price for staff rostering: An

efficient implementation using generic programming and nested column gener-

ation.” European Journal of Operational Research 230 (1): 157–169.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, and D. Sier. 2004. “Staff scheduling and

rostering: A review of applications, methods and models.” European Journal

of Operational Research 153 (1): 3–27.

Hanafi, Säıd, Jasmina Laźıc, Nenad Mladenov́ıc, Christophe Wilbaut, and Igor

Cevits. 2015. “New variable neighbourhood search based 0-1 MIP heuristics.”

Yugoslav Journal of Operations Research 25 (3): 343–360.

Hanafi, Säıd, and Raca Todosijević. 2017. “Mathematical programming based

heuristics for the 01 MIP: a survey.” Journal of Heuristics, pp. 165–206.

Hansen, Pierre, Jack Brimberg, Dragan Urošević, and Nenad Mladenović. 2007.

“Primal-dual variable neighborhood search for the simple plant-location prob-

lem.” INFORMS Journal on Computing 19 (4): 552–564.

Hansen, Pierre, Nenad Mladenovi, and Jose A. Moreno Perez. 2010. “Variable

neighbourhood search: Methods and applications.” Annals of Operations Re-

search 175 (1): 367–407.

Hansen, Pierre, Nenad Mladenović, and Dragan Urošević. 2006. “Variable neigh-

borhood search and local branching.” Computers and Operations Research 33

(10): 3034–3045.

Irnich, Stefan, Guy Desaulniers, and Others. 2005. Shortest path problems with

resource constraints.

Mason, Andrew J., and Mark C Smith. 1998. “A Nested Column Generator for

solving Rostering Problems with Integer Programming.” pp. 827–834.

Rahimian, Erfan, Kerem Akartunali, and John Levine. 2017. “A hybrid Integer

Programming and Variable Neighbourhood Search algorithm to solve Nurse

Rostering Problems.” European Journal of Operational Research 258 (2): 411–

423.

Richard, T., and M. Karp. 1971. “Reducibility among combinatorial problems

University of California at Berkeley.” Science, pp. 85–103.

Santos, Haroldo G., T??lio A M Toffolo, Rafael A M Gomes, and Sabir Ribas. 2016.

“Integer programming techniques for the nurse rostering problem.” Annals of

Operations Research 239 (1): 225–251.

Smet, Pieter, Andreas T. Ernst, and Greet Vanden Berghe. 2016. “Heuristic decom-

position approaches for an integrated task scheduling and personnel rostering

problem.” Computers and Operations Research 76:60–72.


