
SDDP.jl: a Julia package for Stochastic Dual

Dynamic Programming

O. Dowson∗a, L. Kapelevichb

aDepartment of Engineering Science, University of Auckland, New Zealand.
bOperations Research Center, Massachusetts Institute of Technology, Cambridge, MA.

∗odow003@aucklanduni.ac.nz

Abstract

In this paper we present SDDP.jl, an open-source library for solving multi-stage stochastic op-

timization problems using the Stochastic Dual Dynamic Programming algorithm. SDDP.jl is

built upon JuMP, an algebraic modelling language in Julia. This enables a high-level interface

for the user, while simultaneously providing performance that is similar to implementations in

low-level languages. We benchmark the performance of SDDP.jl against a C++ implementa-

tion of SDDP for the New Zealand Hydro-Thermal Scheduling Problem. On the benchmark

problem, SDDP.jl is approximately 30% slower than the C++ implementation. However, this

performance penalty is small when viewed in context of the generic nature of the SDDP.jl li-

brary compared to the single purpose C++ implementation.

1 Introduction

Solving any mathematical optimization problem requires four steps: the formulation of the

problem by the user; the communication of the problem to the computer; the efficient compu-

tational solution of the problem; and the communication of the computational solution back to

the user. Over time, considerable effort has been made to improve each of these four steps for

a variety of problem classes such linear, quadratic, mixed-integer, conic, and non-linear (con-

sider the evolution from early file-formats such as MPS (Murtagh 1981) to modern algebraic

modelling languages embedded in high-level languages such as JuMP (Dunning, Huchette, and

Lubin 2015), or the 73-fold speed-up in solving difficult mixed-integer linear programs in seven

years by Gurobi (Gurobi Optimization 2017)).

However, the same cannot be said for stochastic problem classes. This is particularly true

of convex, multistage, stochastic optimization problems (which are to be the focus of this

paper). There is even considerable debate about how to best formulate a stochastic program

(Powell 2016; Powell 2014). Moreover, when it comes to communicating the problem to the

computer, various formats have been proposed (Birge et al. 1987; Gassmann and Kristjansson

2007), but owing to the lack of agreement about the problem formulation, acceptance of these

is not widespread. Instead, what happens is the development of an ad-hoc, problem-specific

format that is often tightly coupled to individual implementations on a case-by-case basis. The

visualization of stochastic policies is also difficult due to the high-dimensionality of the state

and action spaces, and the inherent uncertainty. As such, policy visualization is also problem-

specific.
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Where progress has been made however, is in the development of efficient computational

solution algorithms. The state-of-the-art solution technique for convex multistage stochastic

optimization problems, Stochastic Dual Dynamic Programming (SDDP), was introduced in the

seminal work of Pereira and Pinto (1991). Since that time, SDDP (and its variants) have been

widely used to solve a number of problems in both academia and industry. However, until re-

cently, no open-source, flexible implementations of the algorithm existed in the public domain1.

Instead, practitioners were forced to code their own implementations in a variety of languages

and styles. Research implementations have been reported in a variety of languages includ-

ing AMPL (Guan 2008), C++ (Philpott and Matos 2012; Helseth and Braaten 2015), GAMS

(Ourani, Baslis, and Bakirtzis 2012; Bussieck, Ferris, and Lohmann 2012), JAVA (Asamov and

Powell 2015) and MATLAB (Parpas et al. 2015), as well as in commercial products such as

the seminal SDDP (PSR 2016) and DOASA (Philpott and Guan 2008). In our opinion, this

“re-invention of the wheel” has limited the adoption of the SDDP algorithm in areas outside of

the electricity industry (which is the focus of most researchers) as there is a large up-front cost

to development. As such, many researchers develop and test new algorithmic improvements

without being able to easily compare their ideas against other implementations, and to the

current state-of-the-art.

This paper presents SDDP.jl – a Julia package for solving multistage stochastic optimization

problems using SDDP. The paper is split into two main sections. First, in Section 2, we introduce

SDDP.jl and explain many of its features through a simple example. Second, in Section 3, we

benchmark SDDP.jl against a C++ implementation of the SDDP algorithm for the New Zealand

Hydro-Thermal Scheduling problem.

It is not the intention of the authors to make this paper a comprehensive tutorial for Julia

or SDDP. In places, familiarity is assumed of both the SDDP algorithm, Julia, and JuMP.

Readers are directed to the project website at github.com/odow/SDDP.jl for more detailed

documentation, examples, and source code.

2 Example: The Air-Conditioning Problem

To illustrate the many features of SDDP.jl, we consider the problem of producing air-conditioners

over a period of three months. During standard working hours, the factory can produce 200

units per month at a cost of $100/unit. Unlimited overtime can be scheduled, however the cost

increases to $300 per unit. In the first month, there is a known demand of 100 units. However,

in months two and three, there is an equally likely demand of 100 or 300 units. Air-conditioners

can be stored between months at a cost of $50/unit, and all demand must be met.

There are four steps to solving the air-conditioning problem. First, we must formulate it

mathematically. Second, we need to communicate the formulation to the solver. Third, we

need to solve the problem efficiently. Finally, we need to understand the solution. We now step

through each of these steps, beginning with the problem formulation.

2.1 Formulating the problem

We can formulate the air-conditioning example as a discrete time, stochastic optimal control

problem in a hazard-decision setting. To do so, it is necessary to define some important terms

that will be used in the remainder of this paper.

A stage is a discrete unit in time when uncertainty is revealed (i.e. the demand), and

decisions are made (i.e. how many units to produce). In the air-conditioning example, there

1There are now at least four: https://github.com/JuliaOpt/StochDynamicProgramming.jl, https:

//github.com/blegat/StructDualDynProg.jl, https://web.stanford.edu/~lcambier/fast/, and https://

github.com/odow/SDDP.jl.
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are three stages (i.e. months).

A state variable is a piece of information that flows between stages. There is one state

variable in the model: xt, the quantity of air-conditioners in storage at the end of stage (i.e.

month) t. xt can also be thought of as the quantity of air-conditioners in storage at the start

of stage t+ 1.

A control variable is an action or decision taken by the agent during a stage. There are three

control variables in the model. pt is the number of air-conditioners produced during standard

working hours during month t, ot is the number of air-conditioners produced during overtime

working hours during month t, and st is the number of air-conditioners sold during month t.

A noise is a random variable that gets observed at the start of each stage. There is one

random variable in the model: ωt, the demand for air-conditioners in month t. We say that

the model is a Hazard-Decision (also called Wait-and-See) model as the noise is realized at the

start of the stage before the controls are chosen.

The value-to-go in a stage t is the expected future value that can be obtained from stages

t + 1 until the end of the time horizon, assuming that the agent takes the optimal control in

each stage. For the air-conditioning problem, the value-to-go in stage t, Vt, given xt units in

storage and an observed demand of ωt units can be expressed as the optimal objective value of

the optimization problem:

Vt(xt, ωt) = max 100pt + 300ot + 50xt + E[Vt+1(xt, ωt+1)]

s.t. xt + pt + ot − st = xt+1

st = ωt

0 ≤ pt ≤ 200

xt, xt+1, ot, st ≥ 0.

(1)

In each stage, ω is sampled from a finite discrete distribution so that ω1 = 100 with probability

1, and both ω2 and ω3 = 100 with probability 0.5, and 300 with probability 0.5. In addition,

V4(·, ·) = 0. We seek the solution to the first stage problem E[V1(0, ω1)].

2.2 Communicating the problem to the solver

Before we introduce SDDP.jl, we must first introduce JuMP (Dunning, Huchette, and Lubin

2015), an algebraic modelling language for the Julia programming language (Bezanson et al.

2017) that we use as the basis for creating and manipulating the subproblems in the SDDP

algorithm. JuMP supports a wide range of problem classes including linear, mixed-integer,

quadratic, conic-quadratic and non-linear. In particular, a large effort has been placed on

abstracting multiple steps in the typical optimization modelling process in a way that is open

to extension by third parties. This has allowed us to create a SDDP modelling library that builds

on the functionality of both JuMP and Julia. The expressiveness of JuMP’s modelling syntax

is available to the user with minimal implementation effort, while Julia’s multiple dispatch,

parallelism and macro-programming features enable a performant yet flexible implementation

of the SDDP algorithm.

We now describe how to communicate the formulation of the air-conditioning problem (Eq.

1) to SDDP.jl. We give the complete code as an appendix item in Listing 1. The file can be

run by saving the file to the disk, opening a Julia REPL, and then running:

julia> include("path/to/airconditioning/file")

However before we can run the example, we need to install SDDP.jl (this requires Julia 0.5

or later):

julia> Pkg.clone("https://github.com/odow/SDDP.jl")
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We now walk through the file and explain points of interest.

Loading packages In Line 1, we load the relevant packages needed by the example: SDDP,

JuMP, and Clp. Users are free to use any of the other solvers in the JuliaOpt ecosystem

that support MathProgBase instead of Clp (see Dunning, Huchette, and Lubin 2015 for more

details).

The SDDPModel object The core type in SDDP.jl is the SDDPModel object. This is anal-

ogous to the JuMP Model object. The constructor for the SDDPModel object has the following

form:

m = SDDPModel(keyword arguments...) do sp, t

... Eq. 1 definition ...

end

There are two key features to discuss. First, we describe the keyword arguments.... There

are many optional keyword arguments which we shall not discuss as they are not necessary for

our simple example. However, the four given in Listing 1 are required. They are stages, the

number of stages in the model; objective bound, a known lower bound (if minimising) on the

first stage problem; sense, :Min or :Max; and solver, any MathProgBase compatible solver.

Second, the unusual do sp, t ... end syntax. This syntax is a Julia construct that is

equivalent to writing:

function foo(sp::JuMP.Model, t::Int)

... Eq. 1 definition ...

end

m = SDDPModel(foo, keyword arguments...)

The arguments sp and t can be given arbitrary names, however the first argument will be

an empty JuMP model that we use to build each subproblem (i.e. Eq. 1), and the second

argument is an index that runs from 1 to the number of stages (in this case, three).

We now describe how to construct the subproblem sp using a mix of JuMP functionality,

and SDDP.jl specific functions.

State Variables SDDP.jl provides a new macro called @state that can be used to add state

variables to the subproblem sp. It takes three arguments: the first is the JuMP model sp, the

second is an expression for the outgoing state variable (i.e. xt+1 in Eq. 1), and the third is one

for the incoming state variable (i.e. xt). The second argument can be any valid JuMP syntax

for the @variable macro. The third argument must be an arbitrary name for the outgoing

variable, followed by ==, and then the value of the state variable in the first stage (i.e. x1). For

the air-conditioning example, we can create the state variable xt as:

@state(sp, xt_1 >= 0, xt == 0)

The reader should note that the syntax of the third argument is just a convenient way of

specifying the initial condition for the state variable. SDDP.jl does not enforce the constraint

in every stage. In constraints and in the objective (detailed below), state variables (i.e. xt and

xt 1) behave just like any other JuMP variable.
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Control Variables Recall that sp is a standard JuMP model. Therefore, the user is free

to add any JuMP variables to the model via the @variable and @variables macros. In the

air-conditioning example, we add the number of units to produce during standard production

hours (pt), the number of units to produce during overtime production (ot), and the number

of air-conditioners to sell (st):

@variables(sp, begin

0 <= pt <= 200

ot >= 0

st >= 0

end)

All controls are non-negative, and the standard production capacity (pt) has an upper bound

of 200 units.

Dynamics The user is also free to add any arbitrary JuMP constraints via the @constraint

macro. In this case, we add the balance constraint that the number of air-conditioners in storage

at the end of a month (xt+1) is the number in storage at the start of the month (xt), plus any

production (pt) and overtime production (ot), less any sales (st):

@constraint(sp, xt + pt + ot - st == xt_1)

Uncertainty SDDP.jl supports random variables in the right-hand-side of constraints. In-

stead of using @constraint to add a constraint with a random variable, SDDP.jl provides the

macro @rhsnoise. This macro takes three arguments. The first is the JuMP model sp. The

second is a keyword argument of the form name = realizations, where name is an arbitrary

name for the random variable, and realizations is a vector containing the finite discrete num-

ber of realizations that the random variable can take. The third argument is any valid JuMP

@constraint syntax that contains name as part of the right-hand-side term (i.e. not a variable

coefficient). For the air-conditioning problem, the agent must sell exactly the quantity of units

demanded. Therefore, we add the @rhsnoise constraint:

D = [ [100], [100, 300], [100, 300] ]

@rhsnoise(sp, wt=D[t], st == wt)

where D[t] is the list of possible demand realizations in stage t. We can set the probability of

the demand realizations in stage t using the setnoiseprobability! function:

P = [ [1.0], [0.5, 0.5], [0.5, 0.5] ]

setnoiseprobability!(sp, P[t])

Readers should note that SDDP.jl does not support uncertainty in the constraint coefficients.

This a known limitation and will hopefully be resolved in a future release.

The stage objective All that remains is to define the objective of the stage problem. SDDP.jl

handles the E[Vt+1(xt, ωt+1)] term behind the scenes, so the user only has to provide the imme-

diate cost via the @stageobjective macro:

@stageobjective(sp, 100 * pt + 300 * ot + 50 * xt)

We now describe how to solve the model and visualize the solution.
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2.3 Solving the problem

As we have previously mentioned, one area in which stochastic programming has made signifi-

cant progress is in the efficient computational solution of the problem. SDDP.jl includes many

of the state-of-the art features that have appeared in the literature. In addition, we heavily

utilize Julia’s type-system and ability to overload generic methods to provide an interface that

is extensible by the user without having to modify the package’s source-code. Due to space

constraints, we are precluded from providing a detailed discussion of each individual feature.

However, three of the most important are:

1. User-defined cut selection routines: without modifying the SDDP.jl source-code, users are

able to define new cut-selection heuristics (See Matos, Philpott, and Finardi (2015).) to

reduce the size of the linear subproblems.

2. User-defined risk measures: without modifying the SDDP.jl source-code, users are able

to define new risk measures that seamlessly integrate with the entire SDDP.jl library.

This functionality has been used by Philpott, de Matos, and Kapelevich (2017) to develop

a distributionally-robust SDDP algorithm without having to implement the full SDDP

algorithm.

3. Parallel solution process: SDDP.jl leverages Julia’s built-in parallel functionality to per-

form SDDP iterations in parallel. SDDP.jl has been successfully scaled from the single

core of a laptop to tens of cores in high-performance computing environments without the

user needing to modify a single line of code.

In Line 23 of Listing 1, we solve the air-conditioning problem using the SDDP algorithm.

There are many different options that can be passed to the solve command, so in the interests of

conciseness, we omit them here. However, the argument max iterations causes the algorithm

to terminate after the provided number of iterations have been conducted. Once the solution

process has terminated, we can query the bound on the solution using the function getbound(m).

This returns the optimal solution (which can be verified by solving the deterministic equivalent)

of $62,500.

2.4 Understanding the solution

Unlike deterministic mathematical programming, SDDP does not provide an explicit optimal

value for every variable. Instead, it constructs a policy in the form of a linear program that

approximates Eq. 1. To obtain the optimal control for a stage, the user sets the value of

the incoming state variable xt, and the realization of the random variable ωt, and solves the

approximated linear program. It can be difficult to understand the policy due to the uncertainty,

and the large dimensionality of the state and control spaces. Therefore, one commonly used

approach is to use Monte Carlo simulation. In SDDP.jl, this can be done using the simulate

function:

sims = simulate(m, 40, [:xt_1, :pt, :ot, :st])

The first argument is the SDDPModel m. The second argument is the number of independent

scenarios to simulate, and the third argument is a list of variable values to record at each stage.

For the air-conditioning problem, we record xt 1, the number of air-conditioners in storage at

the end of stage t, as well as the three control variables (standard production pt, overtime

production ot, and sales st). sims is a vector of dictionaries (one element for each simulation),

and can be manipulated or saved to a file for later analysis. For example, the user can query
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the number of units produced during standard production hours during the second month in

the tenth Monte Carlo simulation by:

julia> sims[10][:pt][2]

In Figure 1, we plot four of the Monte Carlo simulations (chosen as they sample different

demand realizations) for the four variables recorded by simulate. In all scenarios, 200 units are

produced during normal production hours during the first stage (Figure 1b). This is despite the

fact that the demand of 100 units is known ahead of time. Therefore, 100 units are in storage

at the end of the first stage (Figure 1c). If the demand (Figure 1a) is high (i.e. 300 units) in

the second stage, then production remains at 200 units per stage. In addition, 100 units are

sold from storage to meet the demand of 300 units. If demand is low (i.e. 100 units) in the

second stage, then standard production drops to 100 units and no units are sold from storage.

In all scenarios, there is no overtime during the first two stages (Figure 1d).

At the beginning of the third stage, the system can be in one of two states: with 100 units

in storage if the previous stage’s demand was low, or with zero units in storage if the previous

stage’s demand was high. If there are zero units in storage, and the demand in the third stage

is high, then the optimal solution is to produce 200 units during standard production hours,

and 100 units during overtime hours. In all other cases, it is possible to meet the demand using

a combination of the units in storage and standard production.

1 2 3

50

100

150

200

250

300

Month

#
U

n
it

s

(a) Sales: st

1 2 3

50

100

150

200

Month

#
U

n
it

s

(b) Production: pt

Demand
Low-Low
Low-High
High-Low
High-High

1 2 3

20

40

60

80

100

Month

#
U

n
it

s

(d) Overtime: ot

1 2 3

20

40

60

80

100

Month

#
U

n
it

s

(c) Storage: xt 1

Figure 1: Four simulations (each sampling a different demand scenario) of the air-conditioning

problem using the optimal policy.
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In addition to the Monte Carlo simulation functionality, SDDP.jl provides a number of

Javascript plotting tools to help the user understand, and interact with, the solution. One

of those tools automates the plotting of the Monte Carlo simulation results like those shown

in Figure 1. However, for brevity, we direct the reader to the online documentation for more

information,

3 Benchmark: Hydro-Thermal Scheduling

In the previous section, we showed how to implement a simple multi-stage stochastic program

using SDDP.jl. Now, in this section, we use a more complicated model to benchmark the

performance of SDDP.jl against an existing C++ implementation of the SDDP algorithm.

The most common application of the SDDP algorithm (dating back to the original paper of

Pereira and Pinto (1991)) is the Hydro-Thermal Scheduling Problem (HTSP). In this problem,

an operator owns a number of hydro-reservoirs that are connected by a series of rivers and

hydro-electric generators. Water can be released from the reservoirs and turbined to produce

electricity. However, future inflows into the reservoirs from rainfall or ice-melt are uncertain.

Any un-met electricity demand is met by thermal generation. Therefore objective of the operator

is to find a strategy for controlling the release of water over a planning horizon that minimizes

the total cost of thermal generation.

Software for solving this problem using the SDDP algorithm has been successfully commer-

cialized by the Brazilian company PSR (PSR 2016).2 However for this paper, we used DOASA,

a C++ implementation of the SDDP algorithm for the New Zealand HTSP.3 In contrast to

the generic SDDP.jl, DOASA is hard-coded to solve the New Zealand Hydro-Thermal scheduling

problem. This allows it to implement advanced performance optimisations that are not possible

in SDDP.jl with the current version of JuMP.4 In particular, DOASA implements a form of cut-

selection (see Matos, Philpott, and Finardi 2015) which, instead of periodically rebuilding the

constraint matrix with a subset of the discovered cuts (as SDDP.jl does), modifies the constraint

coefficients of a cut that is scheduled to be removed with the most recent cut coefficients. This

minimizes the number of constraints added to the model, avoids having to periodically rebuild

the constraint matrix, and enables a more efficient hot-start of the subsequent solve (compared

to the solve after the matrix rebuild which has no basis information). Our copy of DOASA

was provided by the Electric Power Optimization Centre at the University of Auckland, New

Zealand.

To implement the SDDP.jl5 version of the New Zealand HTSP, we referred only to the

description of the model given in Philpott and Pritchard (2013). At no point did we refer to

any of the C++ source code. We now test the correctness and performance of SDDP.jl by

comparing it to DOASA.

3.1 Correctness

To test the correctness of SDDP.jl and HTSP model, five deterministic instances of the New

Zealand HTSP were created using historic inflows, demand, and pricing for the years 2005 –

2009. These problems were solved for 100 SDDP iterations using DOASA and SDDP.jl. In all

years, both implementations converged to identical lower bounds (Table 1). This experiment

2Somewhat confusingly, the software is named SDDP
3To add to the naming confusion, the term DOASA was also used to refer to a class of algorithms related

to SDDP (the algorithm) by Philpott and Guan (2008). We shall refer to DOASA the software by stylizing it in

typewriter font.
4This may change with JuMP v0.19.
5Further adding to the naming confusion
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Figure 2: Lower bound convergence of DOASA and SDDP.jl on stochastic instance of the New

Zealand HTSP.

strongly suggests that the two implementations of the model and deterministic SDDP algorithm

are identical.

Year

2005 2006 2007 2008 2009

DOASA 493,125,281 423,420,729 575,859,349 446,507,222 340,096,459

SDDP.jl 493,125,281 423,420,729 575,859,349 446,507,222 340,096,459

Table 1: Lower bound ($) after 100 SDDP iterations.

To test the correctness of SDDP.jl and DOASA on a stochastic problem, an instance of the

New Zealand HTSP was created using historic inflows from 1970–2007 and demand and pricing

data from 2008. This problem was solved for 5000 SDDP iterations using both implementations.

In Figure 2, we plot the lower bound against the number of iterations for both implementations.

Due to the different random number generators used by DOASA and SDDP.jl, different random

inflows are sampled. This can lead to a difference in the bound at any particular iteration.

However, we see clear evidence that both implementations converge towards an identical bound

at approximately the same rate. When combined with the deterministic experiments, there is

very strong evidence that the SDDP algorithms in DOASA and SDDP.jl are correct, and the

implementations of the New Zealand HTSP are identical.

To the best of our knowledge, this is the first time that the correctness of a SDDP imple-

mentation in a real-world setting has been demonstrated in the literature.

3.2 Performance

To compare the performance of SDDP.jl and DOASA, an instance of the New Zealand HTSP

was created using 38 years of historic inflows (1970–2007), with data from 2008 for demand and

thermal pricing. Four different solver configurations were setup: DOASA using Gurobi version

6.5.0 (Gurobi 2017a), SDDP.jl using Gurobi version 6.5.0, SDDP.jl using Gurobi version 7.0.0

(Gurobi 2017b), and SDDP.jl using CPLEX version 12.6.1 (IBM 2017). The problem was solved

20 times for each of the configurations. The SDDP algorithm terminated after 500 cuts had
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been generated for the first stage problem. All experiments were conducted on a Windows 7

machine with an Intel i7-4770 CPU and 16GB of memory. All solvers used the default parameter

settings.

In Table 2, we summarize the results of these experiments. There are four columns of

interest: LP Optimize, JuMP, SDDP, and Total. In the LP Optimize column, we report the

time spent in the external solver libraries solving the LP subproblems. In the JuMP column,

we report the time that SDDP.jl spends in calls to the JuMP method solve, excluding the call

to the LP solver. This measures the overhead of solving the problem via the generic JuMP

interface rather than directly through the solver API. In the SDDP column we measure the

time that is spent performing tasks related to the SDDP algorithm except the actual solving

of the subproblems. These include sampling the random variables, calculating cut coefficients,

and writing the solutions to file. We have aggregated the JuMP and SDDP columns for the

DOASA configuration as it does not use JuMP. Finally, in the Total column, we report the total

time spent solving the 500 iterations.

Time (s)

Solver LP Optimize JuMP SDDP Total

DOASA Gurobi v6.5.0 458.1 (1.1) 60.5 (0.8) 518.6 (1.4)

SDDP.jl Gurobi v6.5.0 559.0 (1.0) 68.7 (0.7) 41.5 (0.5) 669.2 (1.5)

SDDP.jl Gurobi v7.0.0 580.2 (1.1) 69.8 (0.7) 41.6 (0.6) 691.6 (1.4)

SDDP.jl CPLEX v12.6.1 319.6 (3.6) 75.9 (1.4) 41.3 (0.9) 436.8 (5.4)

Table 2: Solution time after 500 iterations. All values are reported as the mean (standard

deviation) of twenty repetitions.

After 500 iterations, the lower bound of all configurations was similar (∼$360.4 million).

However, solution times varied between DOASA and SDDP.jl, Gurobi and CPLEX, and even

between different Gurobi versions. Of the four configurations, SDDP.jl with CPLEX v12.6.1

performed the fastest (mean of 436.8 seconds to solve 500 iterations), followed by DOASA (518.6

seconds), SDDP.jl with Gurobi v6.5.0 (669.2 seconds), and SDDP.jl with Gurobi v7.0.0 (691.6

seconds).

The SDDP.jl configuration with Gurobi v6.5.0 spent 22% longer in the LP optimizer than

DOASA with Gurobi v6.5.0 despite solving an identical number of linear programs. This is due

to the advanced cut selection routines implemented in DOASA which aggressively minimize the

size of the subproblems. Interestingly, Gurobi v7.0.0 is 3.7% slower than Gurobi v6.5.0. This

may be a sign that Gurobi is focused on improving the performance of difficult problems that

take a long time to solve at the expense of small LP’s (On average, the subproblems in the New

Zealand HTSP take on the order of 50µs to solve).

Despite solving larger subproblems, SDDP.jl with CPLEX v12.6.1 spent 28% less time in

the LP optimizer compared to DOASA with Gurobi v6.5.0. If the same cut selection routines were

implemented in SDDP.jl, this suggests that the total solution time could be improved further.

It may also be possible to improve the performance of both solvers by using non-default settings.

The use of JuMP adds 10–20% to the total solution time. However, this allows the user

to specify the subproblems using the simple input syntax described in the previous section.

In contrast, DOASA builds the constraint matrix directly using the Gurobi C++ API. This

significantly increases the development time needed to modify and debug the stage problems

(for example, adding a new constraint).

Finally, less than 10% of the total solution time is spent performing tasks in the SDDP.jl

library. This highlights the efficiency of the Julia implementation and demonstrates that further

performance gains are more likely to be found by reducing the solve time of the individual
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subproblems, instead of improving the code in the SDDP.jl library.

4 Conclusion

This paper introduced SDDP.jl, a Julia package for Stochastic Dual Dynamic Programming.

In addition to describing the convenient user-interface, we showed that for the New Zealand

HTSP, the overhead of using JuMP and the generic library SDDP.jl compared to a hard-coded

C++ implementation is less than the variance between two commercial LP solvers. We also

gave a strong guarantee that the implementation is correct by showing that two independently

developed implementations give identical solutions.

We believe the unique features of SDDP.jl (that it is written entirely in a high-level lan-

guage and built upon the state-of-the-art mathematical optimization library JuMP) provide

an excellent platform upon which to build and test, new improvements and extensions, to the

SDDP algorithm. We hope the community will see the value in collaborating on open-source

implementations of stochastic programming codes.
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A Code

Listing 1: Air-Conditioning Example

1 us ing JuMP, SDDP, Clp

2

3 m = SDDPModel(

4 s t a g e s = 3 ,

5 ob jec t ive bound = 0 . 0 ,

6 sense = : Min ,

7 s o l v e r = ClpSolver ( )

8 ) do sp , t

9 @state ( sp , xt 1 >= 0 , xt == 0)

10 @var iab le s ( sp , begin

11 0 <= pt <= 200

12 ot >= 0

13 s t >= 0

14 end )

15 @constra int ( sp , xt + pt + ot − s t == xt 1 )

16 D = [ [ 1 0 0 ] , [ 100 , 300 ] , [ 100 , 300 ] ]

17 @rhsnoise ( sp , wt=D[ t ] , s t == wt)

18 P = [ [ 1 . 0 ] , [ 0 . 5 , 0 . 5 ] , [ 0 . 5 , 0 . 5 ] ]

19 s e t n o i s e p r o b a b i l i t y ! ( sp , P [ t ] )

20 @stageob j e c t i ve ( sp , 100 ∗ pt + 300 ∗ ot + 50 ∗ xt )

21 end

22

23 s t a t u s = s o l v e (m, max i t e r a t i on s =10)

24 getbound (m) # should be 62 ,500

25

26 sims = s imulate (m, 100 , [ : xt 1 , : pt , : ot , : s t ] )
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