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Risk measures, such as value-at-risk and expected shortfall, are widely used in stochastic models. With
the necessary sample size being computed using asymptotic expansions of relative errors for a wide class of
dependent samples, we propose a general framework to simulate these risk measures via a sorting algorithm.
The asymptotic expansions appear to be new even for independent and identical samples. An extensive
numerical study is conducted to compare the proposed algorithm against existing algorithms, showing that
the new algorithm is easy to implement, fast and accurate, even at the 0.001 quantile level. Applications to
the estimation of intra-horizon risk and to a comparison of the relative errors of value-at-risk and expected

shortfall are also given.
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History:

1. Introduction

Risk measures, such as value-at-risk and expected shortfall, are widely used in risk management
(see, e.g., Jorion 2007 and McNeil, Frey and Embrechts 2009) and inventory control (see, e.g. Chen
et al. 2005, Tapiero 2005, Choi et al. 2011, Shapiro et al. 2014). Monte Carlo simulation is widely
used to compute these risk measures, because the underlying stochastic models are too complicated
to yield analytical solutions.

For example, the value-at-risk (VaR), defined as a quantile of a loss distribution, has been
recommended by Basel II as a basis for the Bank of International Settlement’s market-risk-based
capital requirement, which has been implemented in over 60 member countries. In addition, the
Bank of International Settlement is considering to also use the expected shortfall (ES), which is the

expectation of the loss beyond certain VaR level. For a recent review of the regulations, see, e.g.,
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the references cited in Kou and Peng (2014). Indeed, Basel Accords prescribe a standard procedure
to calculate risk measures in two steps: In the first steps, model parameters are estimated based
on samples from at least one year. In the second step, risk measures are computed via one of
the 3 approaches: variance-covariance matrices, historical scenario simulation, and Monte Carlo
simulation. As discussed in Hong and Liu (2009), Sun and Hong (2010) and Hong et al. (2014),
the third approach, Monte Carlo simulation approach, is widely used due to its convenience to
incorporate various risk models and in analyzing complex portfolios.

This paper attempts to propose a general framework to simulate these risk measures via an
sorting algorithm, with the necessary sample size being computed using asymptotic expansions
of relative errors for a wide class of dependent samples. To our best knowledge, the asymptotic
expansion is new even for independent and identically distributed (i.i.d.) samples. An extensive
numerical study shows that the algorithm appears to be accurate and fast, compared to the existing

ones.

1.1. Three Model Settings and Our Contribution

The first main setting is that we consider dependent samples, while many of the existing papers on
simulating risk measures focus on i.i.d. samples. Many financial data (e.g. Campbell et al. 1997)
and demand data in inventory control (see, e.g., Aviv 2003, Gilbert 2005) exhibit complicated time
series dependence. Here we consider a wide class of dependent models, called geometric a—mixing
models, as introduced in a classical paper by Rosenblatt (1961). This class includes many commonly
used time series models, such as ARMA (p,q), GARCH (p,q), Vasicek Model, some stochastic
volatility models; see, e.g. Chen and Tang (2005) and Chen (2008).

Secondly, we take a standard approach to evaluate the accuracy of a simulation estimator, which
is to use the relative error (RE), defined as the ratio of the standard deviation and the absolute
mean value of the estimator, i.e. RE(6,) = 1/var(6,)/|E(0,)|, for an estimator 6,, for 6, where n is
the sample size; see Glasserman (2003).

Thirdly, one needs to clarify the meaning of simulation time. Consider a typical simulation
procedure as shown in Figure 1. In addition to the programming time 7),, which is very important
but not easy to quantify, there are three parts of the total execution time: the time for generating
samples T, the time for estimating risk measures 7., and the time for evaluating the accuracy
of the estimator Tt,,. We propose to consider the total execution time, i.e. Tye, +Tosi + T, as a
criterion to evaluate simulation time. The inclusion of T¢,, appears to be a new suggestion in this
paper. Note that the three parts of the total execution time all contribute differently to the total
execution time. For example, a simulation algorithm may require very few simulation samples,

hence small T, but long estimation time for each simulation sample, hence large T.,;. In addition,
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complicated algorithms tend to make the evaluation step difficult, hence large T,,,. Later we shall
compare the total execution time for various simulation algorithms with similar levels of relative
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Figure 1 Standard simulation procedures
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It should be noted that our proposed algorithm is easy to program, as the samples are drawing
directly from original loss processes and the estimators are based on order statistics which enable
the use of “quick sort” algorithm. Thus the programming time 7, of our proposed algorithm is also
reasonable.

The contribution of the current paper is fourfold: (1) We rigorously derive the expansions of
relative errors for both VaR and ES under the a—mixing model, which appear to be new even for
i.i.d. samples; see Theorem 1 in Section 2. (2) With the necessary sample size being computed using
the new asymptotic expansions, we propose a general framework to simulate these risk measures
via a sorting algorithm; see Sections 3. (3) We conduct an extensive numerical study, comparing the
proposed algorithm against existing algorithms by re-programming them using the same computer.
Numerical results indicate that the new algorithm is easy to implement, fast and accurate, even at
the 0.001 quantile level; see Tables 4, 5, 6, 7 in Section 4. Note that the standard risk management
guidance (e.g. Basel Accords) in financial industry requires computing risk measures with moderate
quantile, i.e. between 0.01 and 0.001, and our propose method can well satisfy that requirement.
(4) We give two applications: The first one is the estimation of intra-horizon risk using S&P 500
index from 1999 to 2016 in Section 5, and the second one is a comparison of the relative errors of

value-at-risk and expected shortfall in Section 6.
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1.2. Literature Review

Many of the existing papers on Monte Carlo simulation of risk measures focus on i.i.d. samples;
see Panel A in Table 1. In terms of dependent samples, a related paper is Heidelberger and Lewis
(1984), in which a maximum transformation method is proposed to simulate VaR, with the main
motivation being to save the computer storage cost (which was a significant factor then but perhaps
no longer so now). More precisely, they suggested to regroup the original dependent samples into
some subgroups, and then sort each subgroups to find the estimator of quantile for the original
simulation data, yielding smaller storage cost; see Table 2. They also pointed out that the method
may inflate the variance of the estimator and change the dependent structures after the regrouping.

Our method complements Heidelberger and Lewis (1984) in two ways. First, we sort the original
samples directly, avoiding inflating the variance of estimators and changing the dependent structure
of original samples (see Table 3). Secondly, the preservation of dependent structure, i.e. a—mixing
and stationary, allows us to use the relative error expansions, which ultimately enables us to

perform simulation faster by estimating the necessary sample size required beforehand.

Table 1 Some literature on simulating VaR and ES

A: 1.I.D. Samples
Glasserman et.al (2000, 2002) indirect importance sampling (IIS) and indirect
importance sampling with stratification (IIS-Q), for VaR
Sun and Hong (2010) direct importance sampling, for VaR & ES
Fuh et al. (2011) indirect importance sampling on portfolio with
heavy-tailed risk factors, for VaR

B: Dependent Samples
Heidelberger and Lewis (1984) maximum transformation, for VaR
This paper sorted Monte Carlo with estimated RE, for VaR & ES

Table 2 Compared with Heidelberger and Lewis (1984)

This paper Heidelberger and Lewis (1984)
’ le"'vXn ‘ ’ le"'vXn ‘
| sort | regroup,
find minimal
\ X, X | Vi, o Yo, n=mv |
| sort
! Yy, Yim) |
3 3
Un = X ([np)) Un = Y([mpv +1))

Our expansions of relative errors for both VaR and ES under the geometric a—mixing model

appear to be new even in the special case of i.i.d. samples. As suggested in Hult and Svensson
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Table 3 Technical comparison results with Heidelberger and Lewis (1984)

This paper  Heidelberger and Lewis (1984)

Risk measures VaR & ES VaR
Stationary available not available
a—mixing available not available
Storage cost not reduced reduced
Variance not inflated inflated
RE expansion yes no

(2009), one might calculate the relative errors heuristically by using the central limit theorem;
more precisely, one can approximate the standard deviation and the absolute expectation of an
estimator by their corresponding terms in the limiting normal distribution. Because the convergence
in distribution does not imply the convergence in moments, there is a counterexample for this
heuristics (see Example 1 in Appendix B of this paper) even in the case of i.i.d. samples. Some
very useful almost sure and convergence-in-probability type expansions for both VaR and ES are
given in Sun and Hong (2010) and Hong et al. (2014). Here the expansions for the relative errors
require a different convergence: moment convergence (see Example 2 in Appendix B of this paper).
A related literature is about asymptotic relative errors for estimators of tail probabilities; see,
e.g., Dupuis et al. (2007), Bassamboo et al. (2007), Blanchet and Glynn (2008), Blanchet and Liu
(2008) and Hult (2011). However, VaR and ES are related to quantile and are inverse problems
of tail probabilities; how to analyze the relative errors from the inverse problem remains an open
problem.

The key idea of getting the expansions for the relative errors is to get some useful expansions for
the moments of VaR and ES, in Theorems 4 and 5, respectively. Here we get the expansions suc-
cessfully mainly because we use 4 tools: (1) a Berry-Essen type bound for a—mixing sequences from
Tikhomirov (1980); (2) a Bernstein type inequality for a—mixing sequences Merlevede, Peligrad
and Rio (2009); (3) an improved argument inspired by Liu and Yang (2012). The above three
tools lead to the moment expansion for VaR in Theorem 4 in the online supplement. (4) A similar
connection between VaR and ES as in Sun and Hong (2010) yield a moment expansion for ES in
Theorem 5 in the online supplement.

The rest of the paper is organized as follows: The asymptotic expansions for the RE’s are given
in Section 2. The algorithm is given in Section 3, along with an extension numerical comparisons of
different estimators in Section 4. The algorithm is applied in Section 5 to estimate intra-horizon risk.

Section 6 compares the RE’s for Value-at-risk, median shortfall, and expected shortfall estimators.
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Technical details, including the regular conditions and asset models, are given in the appendix,

while the proofs of lemmas and theorems are presented in the E-Companion.

2. Analysis of Relative Errors

Consider a profit L, whose distribution is denoted by F’; note that L is a loss when L < 0. For a
given level p € (0,1), VaR is defined as v(p) =v =inf{z: F(x) > p}, and ES is ¢(p)=c=E(L|L <

v(p)). Given time series (dependent) samples {L;}" ,, the empirical estimators for v(p) and ¢(p)

are given by v, (p) = inf{z : F,(x) > p},c,(p) = va(p) — = 37 [va(p) — L;]T, respectively, where

np

F.(z)= 23" I{1,<s} is the empirical distribution of {L;}? ;. In terms of the order statistics, they

n

can also be written as

- L([np]) if np is integer,
U (p) = {L([np]+1) otherwise, (1)
1 n
en(p) = va(p) = 10 > _(0a(p) = L) Lizison ) 2)

=1
where L,y is the r—th order statistic of {L;}},.

Our expansions for relative errors are for geometric a—mixing models. The dependent series
{L;}?_, is said to be a — mizing, as introduced in a classical paper by Rosenblatt (1961), if
limy_, o, a(k) =0, where

a(k)=  sup  |[P(AB)— P(4)P(B)|,

AeF|,BeF[
and 9é be the o—algebra of events generated by {L;,k <i <} for [ > k. The series is said to
be geometric a — mizing if a(k) < c,p* for some constants ¢, >0 and p € (0,1). Many popular
econometric models belomg to the geometric a—mixing class, including ARMA(p,q), GARCH(p,q),
Diffusion Model (Vasicek Model), Stochastic Volatility Model.

2.1. Expansions for Relative Errors

Consider the following two general types of simulation models.

Type A: Dependent samples from a stationary model.

The losses {L;}7+! form a stationary time series. Since many time series models are asymptotic
stationary (e.g. ARCH model, Stochastic Volatility model), to get a stationary distributed loss
sample and to meet this requirement approximately, we can drop the first m (i.e. m >10000) data

{L;}™,, or in a short notation,

(Lly'” 7Lm)7Lm+17"' 7Lm+N,
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7
in which the simulation data {L,,.1, - ,Lxy} are approximately stationary. In contrast, a tradi-
tional way is to repeat simulation procedures N times to get N i.i.d loss samples {LS)H, e ,Lfiv le ,

i.e.
(Lgl)a 7L7(71))7 Lgl-l
(ng)v ang))a Lil—l

(LgN)a"' ’Lgrsz))7 LerLVle-
However, in this way to get N samples m/N data points are dropped. Therefore, it is worthwhile
to consider Type A in simulation to use simulation data more efficiently. This type of samples
has been considered in Heidelberger and Lewis (1984); see Table 4 in Section 4 for a numerical
comparison.
Type B: i.i.d samples from a (non-stationary) time series model.

For non-stationary time series model, we generate N sample path to get IV i.i.d loss samples at
time ¢: " " "
(L12 ) 7Lt2—1)7 Lt2
(L(l )7 T 7Lt(521)7 L1(5 )
(LY, ), LY.
This type of samples has been considered in many exiting papers, e.g. Heidelberger and Lewis

(1984), Sun and Hong (2010), Hong et al. (2014), Glasserman et al. (2000), Glasserman et al.
(2002) and Fuh et al. (2011); see Tables 5, 6, 7 in Section 4 for numerical comparisons.

THEOREM 1. (1)(Dependent samples) For the geometric o mixing series, we have the following
expansions under Assumptions A, B, C,

O"IL,’U — _ Gn,c _ _ .
RE(Un):—Wn 12 4 o(n=), RE(cn):_En 12 4 o(n-8/4+) 3)

where f is the density of L, afw ={p(1-p)+ 22:;11 71(k)}, 1i(k) = cov{l{r, <v}, 1{Lk+1<U}}7
and 02, = {var[(v— L)+ 2312 1(k)}, 7a(k) = cov{(v—L1)*, (v — Lia)*}.
(2)(IID samples) For i.i.d. samples, we have the following expansions under the conditions of

Assumptions A1, B, C:

Oy _ B . - .
RE(Un):—Wn 1/2—|—O(TL 3/4)7 RE(Cn):—@n 1/2+0(n 3/4+) (4)

where f is the density of L, where 02 =var[l{L<,] =p(1 —p) and o2 =var|[(v—L)*].

Proof. See E-Companion EC.2.. [
The key idea of proof is to get some useful expansions for the moments of VaR and ES first,
in Lemmas 7 and 8, respectively. Here we get Theorems 4 and 5 successfully mainly because we

use 4 tools: (1) a Berry-Essen type bound for a—mixing sequences from Tikhomirov (1980); (2) a
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Bernstein type inequality for a—mixing sequences from Merlevede, Peligrad and Rio (2009); (3) an
improved argument inspired by Liu and Yang (2012). The above three tools lead to the moment
expansion for VaR VaR in Theorem 4 in the online supplement. (4) Then a similar connection
between VaR and ES as in Sun and Hong (2010) yields a moment expansion for ES in Theorem 5
in the online supplement. Even in the case of i.i.d. cases, Theorems 1, 4 and 5 appear to be new; in
the case of i.i.d., Hall and Martin (1988) and Reiss (1989) develop approximations for the second
order moments and higher order of moments of VaR, respectively (i.e. similar to Theorem 4), all
under stronger conditions.

Theorem 1 is not only useful in estimating necessary sample sizes need in a Monte Carlo simultion
to achieve a given accuracy of relative error (to be discussed the next), but also to help to make

comparison of REs between VaR and ES, which will be discussed in Section 5.

2.2. Numerical Performance of the Relative Error Expansions and Related Sample Size

calculation

The expansions in Theorem 1 suggest the follow approximations for the relative errors of VaR v,
and ES ¢,:
RE(v,) = ——22" _p=12 RE(c,)=—2%5n 12, (5)
Unf(vn) Enp

where &,,,,6, . are computed using the spectral method in Heidelberger and Welch (1981), and
the density function f(-) can be estimated by the standard kernel method. To show the accuracy of
the approximation, we also use the traditional resampling method to compute the relative errors,
i.e. repeating the estimation many times to compute error. More precisely, if the estimate is é, then
we repeat the estimation m times and obtain é(l), e ,é(m). The resampled RE RE (é) is computed
by

o Wlinh o

where § = Z?;é(i) /m. Of course, the resampling method is a time consuming way while our

approximations based on the expansion are much faster.

Figure 2 shows the performances of the estimated REs for both dependent samples and i.i.d
samples. We use resampled REs obtained from 200 repeats as the true REs. The estimated REs
match the true REs very well, especially for i.i.d samples with large sample size.

Approximations in Theorem 1 can help us to estimate the sample size needed to achieve a given
level of relative error. More precisely, given a fixed level « for relative error, inverting (5) leads to
ny and n¢, which are the approximate sample size that makes relative errors of v, and ¢, to be

around level a:

52 52
o) ) g
Ng=—a"—, Nf=—55-—. (7)
v2 f(v,)%a? cpra
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Figure 2  Estimated REs and Resampled REs for VaR and ES.
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Note. The top two graphs report results for the MA(1) Model: L¢+1 = 0.5€¢; + €¢41, € ~ N(0,1). The other four
graphs report results for i.i.d loss samples with exponential density f(x) = e*l,<0}, and Pareto density f(z) =

(1- x/3)741{x<0}. Here the level p = 0.05 and resampled relative errors are obtained from 200 repeated samplings.

One might think of using upper bounds to get some conservative estimation of the required sam-
ple sizes, instead of using the expansions. However, finding suitable bounds for the relative errors

of VaR and ES may be difficult for two reasons: First, the bounds may not be available, especially
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if the estimators involving importance sampling or more complicated models. For example, to our
best knowledge, even in the case of i.i.d. samples, for direct importance sampling, no bounds for
relative errors are available for importance sampling estimators (see, e.g., the discussions in Sun
and Hong 2010 and Liu and Yang 2012); in addition, for indirect importance sampling method,
even in the case of i.i.d. samples, the moments of tail probability estimators do not easily lead
to a computable bound for the relative errors for quantile estimate (see, e.g., the discussions in
Glasserman et al. 2000 and Glasserman et al. 2002), as the inversion of tail probabilities make the
calculation more complicated. Second, although there are bounds available for direct estimators
without importance sampling, the bounds may be too large, and may not get smaller with the
increasing of sample size. For example, in the case of i.i.d. samples, Papadatos (1995) proposes the
bound for variance of order statistic (without any importance sampling) L. (r = [np]) However,
for a fixed p, the upper bound is always bounded below by a constant, no matter how large the

sample size n is.

3. Sorted Monte Carlo with Estimated Relative Errors

Based on the expansion in Theorem 1, we propose the following algorithm of sorted Monte Carlo

with estimated relative errors as follows:

Algorithm of sorted Monte Carlo with estimated relative errors

L Initialize: Set 1 — 0, Ny(e.g. — 10000), RE; — ag(c > ), the sample set Sy — ¢, and its size
My — 4(So).
II. S-step :
Sub-step 1: Generate N; loss samples {Ly,---, Ly, }, let M,y = M;+ N;, and form the sample
set Sip1 =8 U{L1, -+, Ln,}.
Sub-step 2: Sort the samples in S;;; in ascending order, and determine éi—i—l = U, for VaR
and 0, = cu,,, for ES by estimators (1) and (2).
Sub-step 3: Report RE;, = RAE(UM ) for VaR and RE;,, = RAE(CM
to (5).
Sub-step 4: If RE; 1 < «, stop with output éz—H and RE = RE; . Otherwise go to the R-

e .,1) for ES according

step.
III. R-step: Compute the sample size N;;; =n? for VaR and N, =n¢ for ES by (7) and return
to S-step by replacing ¢ with ¢ + 1.

With fast computers and the availability of storage, several sorting methods can be applied to
conduct Sub-step 2 in our simulation algorithm. Here we shall exam two popular sorting methds:
Quick sort and Bubble sort. First, the following lemma reports the computation complexity of the

two sorting algorithms and the naive Monto Carlo (without sorting).
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LEMMA 1. The complexity for naive Monte Carlo, Bubble sort Monte Carlo, and Quick sort Monte
Carlo are O(N?), O(N?), O(Nlog N), respectively.

Proof. See E-Companion EC.1. [

Figure 3 Execution Time for VaR and ES Estimations.

Average execution time for VaR estimation Average execution time for ES estimation
T T T T T
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201 20b

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Sample size Sample size

Note. Left one is for VaR estimation, right one is for ES estimation. Loss distributions here are with density function

T

f(z)=¢€", forz <0 and f(z)=(1—2)"*, forz <0 respectively. p is chosen to be 0.05. Average execution time are

computed with 100 repeats.

Secondly, we report in Figure 3 the execution time for different simulation algorithms, which
suggests that the Quick sort algorithm performs significantly faster than other two algorithms,
consistent with the theoretical complexity results in Lemma 1. This numerical result is also con-
sistent with the previous numerical comparions about sorting algorithms, e.g. in Puschner (1999),
Knuth (1973) and Sedgewick (1989).

REMARKS: 1. There are other sorting methods in addition to the two sorting methods studied
here. For example, Yaroslavskiy (2009) proposes a dual-pivot partitioning algorithm which out-
performs the classic quicksort marginally under Java, and other multi-pivot quicksort methods
are proposed and analyzed in Kushagra et al. (2014). However, dual-pivot and multi-pivot quick-
sort only outperform the classic one by a margin (Kushagra et al. 2014). Furthermore, the classic
quicksort is easily implemented in the Matlab package.

2. The convenience of using sorting algorithm may disappear if we choose more complicated
estimators of VaR and ES. For example, if we use importance sampling or nonparametric method,

sorting techniques may not be applied directly and hence computation complexity increases.

4. Numerical Results

In this section we shall conduct an extensive numerical study, comparing the proposed algorithm

with other algorithms by using the same computer and by re-programming the existing algorithms
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Table 4 Time Series Factor Model (Type A)
Method Estimate Sample Tyer +Tost  Teva T(=Tyen+ Estimated Resampled
(SD) size AT+ Teva)  RE (SD) RE
Panel A: Portfolio with 10000 equally weighted stocks
VaR
p=0.01
This paper (with estimated RE) -23.599(0.1841) 263467 41.392 1.1277 42.519 0.0074(0.0013) 0.0078
This paper (no estimated RE) -23.510(0.2398) 110000 33.227 3289.5 3322.7 N.A. 0.0102
Heidelberger & Lewis(1984) -23.409(0.2271) 1750 16.221 1605.9 1622.1 N.A. 0.0097
»=0.001
This paper (with estimated RE) -42.053(0.3448) 1435849 260.57 7.0381 267.61 0.0080(0.0016) 0.0082
This paper (no estimated RE) -42.545(0.4552) 480000 144.67 14323 14467 N.A. 0.0107
Heidelberger & Lewis(1984) -42.178(0.4471) 1600 168.79 16711 16879 N.A. 0.0106
ES
»=0.01
This paper (with estimated RE) -30.986(0.2262) 722196 136.23 3.0413 139.28 0.0071(0.0020) 0.0073
This paper (no estimated RE) -31.583(0.3411) 280000 89.783 8888.5 8978.3 N.A. 0.0108
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
p=0.001
This paper (with estimated RE) -54.671(0.4538) 5603487 1112.7 22.618 1135.3 0.0067(0.0021) 0.0083
This paper (no estimated RE)  -54.517(0.6760) 2600000  697.97 69099 69797 N.A. 0.0124
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Panel B: Portfolio with 20000 equally weighted stocks
VaR
p=0.01
This paper (with estimated RE) -28.235(0.2231) 285385 78.295 1.2862 79.581 0.0074(0.0011) 0.0079
This paper (no estimated RE) ~ -28.448(0.2674) 120000 75.105  7435.3 7510.5 N.A. 0.0094
Heidelberger & Lewis(1984) -28.336(0.2946) 1800 30.137 2983.6 3013.7 N.A. 0.0104
p=0.001
This paper (with estimated RE) -47.344(0.3692) 1524346 482.36 8.2804 490.64 0.0073(0.0014) 0.0078
This paper (no estimated RE)  -47.131(0.4995) 500000 327.77 32449 32777 N.A. 0.0106
Heidelberger & Lewis(1984) -47.020(0.4843) 1700 326.58 32331 32658 N.A. 0.0103
ES
=001
This paper (with estimated RE) -36.034(0.2414) 867756 248.09 3.7263 251.81 0.0063(0.0019) 0.0067
This paper (no estimated RE) -36.313(0.4103) 290000 197.89 19591 19789 N.A. 0.0113
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
»=0.001
This paper (with estimated RE) -59.597(0.4171) 6282067 2111.3 25.022 2136.3 0.0067(0.0018) 0.0070
This paper (no estimated RE) -59.462(0.7670) 2700000 1415.9 140176 141592 N.A. 0.0129
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Note. VaR and ES of portfolio return (1/n 7", r; ) are computed. Portfolio includes n equally weighted stocks. Each stock return r; ¢, =
1,---,n (normalized by multiply 100) is modeled by three factors fi :, fo,¢, f3,¢, i.€. 756 = a; + Zi:l B,(ci)fk,t + €4, €6 ~ N(0,1/6).
Three factors satisfy the AR(2) model, fi1,; =0.9f1,-1 —0.2f1,-2 + e,El),eEl) ~ N(0,1), ARCH(1) model, fo, =0.5f2:1_1 + as,ar =

440.5a2_,€6?,ef? ~ N(0,1), and SV (Stochastic Volatility) Model, fs, = Viel® logV, = 0.6logVi_1 + m1, €2 ~ N(0,1),7: ~
N(0,1), cov(ef®,n,) = 0.5, cov(er,mi—;) = 0 for j > 0, respectively (see Chen and Tang, 2005). In Panel A, a portfolio with n = 10000
stocks is considered with o; = —3 + 6i/10000, 8" = —4 + 8i/10000, 85" = 8i/10000 and BS” = —1 + 4i/10000. In Panel B, another
portfolio with n = 20000 stocks is considered with c; = —8+6i/20000, 8" = —4+8i/20000, 8%” = 8i/20000 and 8" = —1 + 4i/20000.
ES is only computed with our framework, because ES has not been considered in Heidelberger and Lewis (1984). The mean and SD of Estimated
RE is based on 100 repeats, and resampled RE is computed with 100 replications. Each reported CPU time is in seconds.

in Heidelberger and Lewis (1984), Sun and Hong (2010) Glasserman et al. (2000), Glasserman et
al. (2002) and Fuh et al. (2011) .

We shall conduct five numerical experiments to test the performances of our framework and
other existing methods. The first two experiments consider Type A samples, and the rest three

consider Type B samples. We compare simulation methods by simulation cost and accuracy, and
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report the total execution time, i.e. Ty, +T¢s +Tepq, where Ty, is the time for generating samples,
T.,: the time for estimating risk measures, and T, the time for evaluating the relative errors. More
precisely, for each experiment we record the sample size, Tye,, +Test, Teva, and T' = Tyer, +Togr +Teva
with controlled RE to be around 1%.

Table 4 shows two experiments of portfolios with equally weighted stocks under factor models.
Panel A considers a 10000-stock portfolio, while Panel B considers a 20000-stock portfolio. Risk
measures of the portfolio returns and execution time for the maximum transformation method
in Heidelberger and Lewis (1984) and for our algorithm are reported. Although our proposed
algorithm has slightly larger T,., + 7.5 due to its R-step, the time in the evaluating part Tt,, is
much smaller thanks to our expansion in Theorem 1, resulting in much faster total execution time
T. Hence, our framework has quite less T', comparing with the maximum transformation.

Table 5 reports numerical results of a portfolio which consists of call and put options. This
portfolio is similar to one of the portfolios considered in Glasserman et al. (2002), except that all its
underlying stocks satisfy Johnson NGARCH(1,1) model. We apply our method and the maximum
transformation to simulate risk measures of portfolio value. Note the difficulty associated with
Johnson time series innovation, if one attempts to do importance sampling. Similar to table 4, our

framework outperforms the maximum transformation method as well.

Table 5 Value of a Portfolio of Call and Put Options with Non-stationary Time Series Returns (Type B)

Method Estimate Sample Tyep +Tost  Teva T(=Tyen+ Estimated Resampled
(SD) size T oot + Teva) RE (SD) RE
VaR
p=0.01
This paper (with estimated RE) -81.479(0.6599) 27643 5.5602 0.0094 5.5696 0.0082(0.0004) 0.0081
This paper (no estimated RE)  -81.881(0.8597) 15500 4.2679  422.52 426.79 N.A. 0.0105
Heidelberger & Lewis(1984) -81.731(0.8664) 400 5.3006  524.76 530.06 N.A. 0.0106
p=10.001
This paper (with estimated RE) -103.83(0.8618) 56479 13.627  0.0242 13.651 0.0084(0.0010) 0.0083
This paper (no estimated RE)  -104.06(1.0614) 36000 10.599  1049.3 1059.9 N.A. 0.0102
Heidelberger & Lewis(1984) -104.19(1.0836) 90 12.177 1205.5 1217.7 N.A. 0.0104
ES
p=0.01
This paper (with estimated RE) -90.946(0.7912) 30080 6.4069  0.0007 6.4076 0.0083(0.0005) 0.0087
This paper (no estimated RE) -92.075(0.9575) 16000 4.5324  448.71 453.24 N.A. 0.0104
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
p=10.001
This paper (with estimated RE) -110.75(0.9414) 95170 21.254 0.0061 21.261 0.0080(0.0010) 0.0085
This paper (no estimated RE)  -110.66(1.0734) 52000 14.567  1442.1 1456.7 N.A. 0.0097
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Note. VaR and ES of portfolio value (V' (t) — V'(0)) are computed. Portfolio includes shorting 10 ATM calls and 5 ATM puts on each of 10
uncorrelated stocks, while all options having a half-year maturity. We investigate losses over 10 days (¢ = 10 days). All stock have an initial
value of 100, and they satisfy Johnson NGARCH(1,1) process (model is estimated based on daily data, see Simonato and Sentoft (2015)):
In Sil =a+ o€, 02 =Po+ G107, + 207 (e — 0)?, & ~ Jsu(a,b), where & =3.3 x 1074, 8, = 1.1 x 1075, 8; = 0.8664, 3> =
0.0631,0 =0.9937,a = 0.3478,b=2.1610. The mean and SD of Estimated RE is based on 100 repeats, and resampled RE is computed with
100 replications. Each reported CPU time is in seconds.
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Table 6 Value of a portfolio of Call and Put Options with I.I.D. Gaussian Returns (Type B)
Method Estimate Sample Tyen +Tost  Teva T(=Tyent+ Estimated Resampled
(SD) size +T..+T..) RE (SD) RE
VaR
p=0.01
This paper (with estimated RE) -160.33(1.3307) 23086 0.0731  0.0079 0.0810 0.0077(0.0003)  0.0083
This paper (no estimated RE)  -159.76(1.5656) 13000 0.0419  4.1487 4.1907 N.A. 0.0098
Sun and Hong (2010) -159.38(1.6575) 300 0.0058  0.5743 0.5801 N.A. 0.0104
Glasserman et.al (2000)IIS -158.93(1.5592) 135 0.1119  11.077 11.189 N.A. 0.0098
Glasserman et.al (2000)IIS-Q -159.17(1.6596) 40 0.0995  9.8495 9.9490 N.A. 0.0108
p=0.001
This paper (with estimated RE) -197.86(1.7687) 56316 0.1819  0.0211 0.2030 0.0083(0.0010) 0.0088
This paper (no estimated RE)  -197.46(2.0931) 34000 0.1105  10.947 11.058 N.A. 0.0106
Sun and Hong (2010) -198.05(1.9104) 160 0.0031  0.3021 0.3052 N.A. 0.0097
Glasserman et.al (2000)IIS -197.39(1.9937) 38 0.0439  4.3477 4.3916 N.A. 0.0101
Glasserman et.al (2000)IIS-Q -196.96(2.0681) 12 0.0532  5.2666 5.3198 N.A. 0.0105
ES
p=0.01
This paper (with estimated RE) -175.91(1.4248) 26551 0.0862  0.0006 0.0868 0.0078(0.0004) 0.0081
This paper (no estimated RE)  -176.92(1.7339) 15000 0.0483  4.7910 4.8394 N.A. 0.0098
Sun and Hong (2010) -176.79(1.8033) 100 0.0018  0.1801 0.1819 N.A. 0.0102
Glasserman et.al (2000)IIS N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Glasserman et.al (2000)IIS-Q N.A. N.A. N.A. N.A. N.A. N.A. N.A.
p=0.001
This paper (with estimated RE) -210.09(1.7437) 91474 0.2647  0.0083 0.2730 0.0081(0.0010)  0.0083
This paper (no estimated RE) ~ -209.87(2.1826) 57000 0.1864  18.456 18.643 N.A. 0.0104
Sun and Hong (2010) -209.82(2.1401) 50 0.0011 0.1067 0.1078 N.A. 0.0102
Glasserman et.al (2000)IIS N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Glasserman et.al (2000)IIS-Q N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Note. VaR and ES of portfolio value (V' (t) — V(0)) are computed. Portfolio is taken from Glasserman et al. (2000), consisting of shorting
10 ATM calls and 5 ATM puts on each of 10 uncorrelated stocks. All options have a half-year maturity, and all stocks have an initial value of
100 and an annual volatility of 0.3. Risk-free rate is 5%. We consider losses over 10 days (¢ = 0.04 in year). For direct importance sampling in
Sun and Hong (2010), we use the change of measure techniques from Glasserman et al. (2000). The mean and SD of Estimated RE is based
on 100 repeats, and resampled RE is computed with 100 replications. Each reported CPU time is in seconds.

Table 6 and 7 report numerical results with i.i.d. samples taken from portfolios in the existing
literature, with light and heavy tails, respectively. Note that the standard risk management guid-
ance (e.g. Basel Accords) in financial industry requires computing risk measures with moderate
quantile, i.e. between 0.01 and 0.001, and our propose method can well satisfy that requirement.

These numerical tables indicate that the new algorithm is easy to implement, fast and accurate,
even at the 0.001 quantile level. There are two reasons for the good performance of our algorithm.
First, when we only consider the execution time of S-step Ty, + T, it is usually small even when
the sample size is extremely large. This is largely attributed to the quick sort algorithm. Secondly,

our relative error expansions reduce the time of evaluating T.,, significantly.

5. Application 1: Intra-Horizon Risk

Our simulation algorithm can serve as an alternative to compute VaR with intra-horizon risk
(VaR-I), which was introduced by Bakshi and Panayotov (2010) to incoporate path-dependent risk

instead of just the risk at the end of a time horizon. More precisely, for a given stochastic process
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Table 7 Value of a Portfolio of Call and Put Options with I.I.D. Heavy-tail Returns (Type B)
Method Estimate Sample Tyep +Tosi  Teva T(=T,en+ Estimated Resampled
(SD) size FT oo+ Tova) RE (SD) RE
VaR

p=0.01
This paper (with estimated RE) -59.089(0.4964) 312680 0.9519  0.2176 1.1695 0.0080(0.0010)  0.0084
This paper (no estimated RE)  -59.555(0.6015) 170000 0.6029  59.689 60.292 N.A. 0.0101
Glasserman et. al (2002) -59.319(0.5932) 1000 1.3922  137.83 139.22 N.A. 0.0100
Fuh et. al (2011) -59.191(0.6452) 850 13.481  1334.6 1348.1 N.A. 0.0109

p=0.001
This paper (with estimated RE) -159.10(1.3046) 2266233 7.5765  1.1339 8.7104 0.0082(0.0011)  0.0084
This paper (no estimated RE)  -158.69(1.6980) 1400000 5.7016  564.46 570.16 N.A. 0.0107
Glasserman et. al (2002) -158.73(1.5931) 930 1.2052  119.31 120.52 N.A. 0.0101
Fuh et. al (2011) -159.43(1.6561) 800 9.7891  969.12 978.91 N.A. 0.0106

p=0.0005
This paper (with estimated RE) -212.86(1.7029) 6251108 20.720  3.3899 24.110 0.0072(0.0016)  0.0080
This paper (no estimated RE) ~ -212.11(1.9514) 3800000 19.099  1890.8 1909.9 N.A. 0.0092
Glasserman et. al (2002) -211.54(2.2423) 850 1.1334  112.21 113.34 N.A. 0.0100
Fuh et. al (2011) -212.13(1.9516) 780 9.1624 907.08 916.24 N.A. 0.0092

ES

p=0.01
This paper (with estimated RE) -103.35(0.8061) 1695129 4.9997  0.0718 5.0715 0.0078(0.0011)  0.0078
This paper (no estimated RE)  -103.55(1.0873) 910000 4.0777  403.69 407.77 N.A. 0.0105
Glasserman et. al (2002) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Fu et. al (2011) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p=0.001
This paper (with estimated RE) -268.68(2.2569) 12522977  34.615  0.3624 34.977 0.0082(0.0011) 0.0084
This paper (no estimated RE)  -269.38(2.8555) 6500000 32.216 31894 3221.6 N.A. 0.0106
Glasserman et. al (2002) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Fuh et. al (2011) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Note. VaR and ES of portfolio value (V' (¢) — V' (0)) are computed. The portfolio is taken from Fuh et al. (2011), consisting of options with
heavy-tailed underlying stock returns. More precisely, L = (V(¢t) — V(0)) = >, (b: X + A X?) with t-distributed risk factors {X;}7™,,
where X; = ii/ , Z; ~ N(0,1) and independent with Y ~ x2. Parameters satisfy v = 5,b; = 0.1+ 5/100,\; =0.05 X 5,5 =1,--- ,15.
The mean ané SD of Estimated RE is based on 100 repeats, and resampled RE is computed with 100 replications. Each reported CPU time is
in seconds.

X, t€[0,T], Xy =0, with X7¥" := ming.,.7{X,}, the VaR-I is defined as the value of a quantile
of the distribution for X7"; in particular, we consider the 10-day 1% VaR-I which satisfies

Prob(X™ < —VaR-1) =1%,T = 10 days.

In some rare cases, e.g. the double exponential jump diffusion models in Kou (2002) and Kou and
Wang (2003), an analytical solution for the VaR-I is available in terms of Laplace transforms. In
general, previously there are two ways to compute the intra-horizon risk numerically, the partial
integro-differential equation (PIDE) approach in Bakshi and Panayotov (2010) for Lévy jump
models, and an approximation based on a displaced mixed-exponential model in Leippold and
Vasiljevic (2016). Our simulation algorithm complement the existing numerical methods by offering
a simple approach for general stochastic processes, with the total CPU time comparable (sometimes
even shorter than) to the existing numerical methods, thanks to the relative error expansion and
the quick sort. For example, it takes almost the same computational and programing effort for our
simulation algorithm to compute VaR and VaR-I, while other methods may take significant longer

time and may need more programming effort to compute VaR-I than VaR.
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Here we consider three models (see Appendix C for details): Merton’s jump diffusion model
(MJD), double exponential model (DEM), and exponential dampened power law model (CGMY).
MJD and DEM are finite activity Lévy processes, while the CGMY model is infinite activity
Lévy processes. We include DEM, because the benchmark values are available from the analytical
solutions in Kou and Wang (2003), and interestingly the largest VaR-I based on teh S&P 500 data
from 1999 to 2016 was from the DEM.

We estimate the intra-horizon risk for S&P 500 index from Jan 1, 1999 to Nov 31, 2016. To
estimate 10-day VaR-I, we follow the literature by using weekly data to estimate the parameters
for the 3 models. Since the traditional MLE method may have multiple local maxima and may
have difficulties of distinguishing high frequency small jumps from diffusions (Honore 1998), we
consider both the maximum likelihood estimation (MLE) method and the threshold method in
Dang and Forsyth (2015) and Forsyth and Vetzal (2016).

Table 8 reports the estimated parameters for three models with different estimation methods.
For MJD and DEM models, the jump sizes from MLE method are quite larger than those from
threshold method, indicating that MLE tends to over estimate the jumps due to it’s drawback
to distinguish small jumps from diffusions. See Dang and Forsyth (2015) and Forsyth and Vetzal
(2016) for more discussion along this line. Since threshold method cannot be applied to infinite

activity Lévy processes CGMY, we only report parameters from MLE method for this model.

Table 8 S&P 500: Model parameters estimates
Merton’s jump-diffusion model (MJD)
Method A 1%} oy o Likelihood
Threshold: " =—-2.5,a"? =25 4.1756 -0.0124 0.0654 0.1257 N.A.
Threshold: " = -3, " =3 1.4475 -0.0286 0.0865 0.1468 N.A.
Threshold: a®™ = —4,a"? =4 0.3897 -0.0319 0.1316 0.1631 N.A.

MLE 22.3019 -0.0055 0.0296 0.1064 2196.1
Double exponential model (DEM)
Method o A P T 72 Likelihood
Threshold: a=2.5 0.1257 4.1756 0.4133 0.0595  0.0630 N.A.
Threshold: a=3 0.1468 1.4475 0.3462 0.0811 0.0866 N.A.
Threshold: a=4 0.1631 0.3897 0.4286 0.1044 0.1341 N.A.
MLE 0.0953 46.5775 0.4139 0.0145 0.0164 2198.2
Exponential dampened power law model (CGMY)
Method C G M Y Likelihood
MLE 5.3436 38.6766 54.0719 0.5 2198.6

Note. The weekly data of S&P 500 in period Jan 1, 1999-Nov 31, 2016 is used to estimate 3 models: MJD, DEM, and
CGMY. First, the return time-series is demeaned. Then, both the MLE method and the threshold method are implemented to
estimate parameters according to Dang and Forsyth (2015) and Forsyth and Vetzal (2016) for the finite activity models, MJD
and DEM. For infinite activity model CGMY, only the MLE is applicable. The threshold values a*?(a®*™) for the MJD are used
to indicate the occurrence of upward (downward) jumps, if the ratio of positive (negative) return to its volatility in this period
is greater (smaller) than the threshold value a*?(—a?*™). In DEM model, we use the same threshold value « for both upward
and downward jumps. The chosen of these threshold values is based on Dang and Forsyth (2015) and Forsyth and Vetzal (2016).
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After obtaining the estimated parameters, we report in Table 9 the VaR-I and VaR multiples
at both p=0.01 and p=0.001 levels for different models. There are several interesting empirical
observations. First, the VaR-I multiples are all greater than 1 for all models, indicating that the
intro-horizon risk VaR-I is larger than the end of horizon risk VaR. Secondly, VaR-I multiples
based on threshold method varies from 1.1056 to 1.6097 (1.8988 to 2.2947) for MJD model and
from 1.0825 to 1.9397 (2.8385 to 3.0700) for DEM model at p = 0.01(p = 0.001) level, indicating
significant uncertainty in estimating risk. Thirdly, the largest VaR-I and VaR multiples seems to
from DEM models, which might come from the fact that the DEM has the heaviest tail part among
the 3 models.

Table 9 Multiples of Intra-horizon value-at-risk (VaR-I) and end-of-horizon value-at-risk (VaR)

p=0.01 p=0.001
Model(Method) VaR-I VaR VaR-I VaR
MJD (Threshold: a®*" = —2.5,a"? = 2.5) 1.6097 1.4831  1.8988 1.7809
MJD (Threshold: a®*" = =3, " = 3) 1.5342 1.3528  2.1630 2.0405
MJD (Threshold: a®*" = —4, a"? =4) 1.1056 1.0216  2.2947 2.1576
MJD (MLE) 1.2615 1.1750  1.3640 1.3055
MJD (MLE, Bakshi & Panayotov (2010), 1995-2005)  1.57  1.24 N.A. NA.
DEM (Threshold: a =2.5) 1.9397 1.8106  2.8350 2.7271
DEM (Threshold: o= 3) 1.5854 1.3930  3.0700 2.9429
DEM (Threshold: ao=4) 1.0825 1.0033  2.8460 2.6677
DEM (MLE) 1.3053 1.1848  1.4481 1.3613
DEM (MLE, Bakshi & Panayotov (2010), 1995-2005) N.A. N.A. N.A. NA.
CGMY (MLE) 1.2590 1.1775  1.4225 1.3348
CGMY (MLE, Bakshi & Panayotov (2010), 1995-2005) 1.41  1.28 N.A.  N.A.

Note. The table reports multiples of the intra-horizon value-at-risk(VaR-I) and end-of-horizon value-at-risk(VaR) for S&P
500 index in period Jan 1, 1999-Nov 31, 2016 at p = 0.01 and p = 0.001 levels with a 2-week (10 days) horizon. The
multiples are computed by [VaR-1/(—2.326 + f1)| and |[VaR/(—2.326 + 1)| for p=0.01 level and |VaR-1/(—3.096 + ()|
and [VaR/(—3.096 + )| for p=0.001 level. As in Bakshi and Panayotov (2010), the denominators in these formulas are
benchmark VaR, which are quantiles of Normal distribution N(0,5), where & is the standard deviation of the return time
series.

To compare the computational efficiency, we report the CPU time in table 10 for 3 methods,
our simulation algorithm, the maximum transformation method, and the PIDE method, by re-
programming all the method in the same computer. To give a benchmark comparison, we also
report the results from the analytical inversion from Kou and Wang (2003). It is showed that when
compute intra-horizon risk for MJD and CGMY models, our simulation method is faster than its
two competitors. Our algorithm behaves well in this comparison. Note it takes almost the same
computational and programing effort for our simulation algorithm to compute VaR and VaR-I,
while the PIDE method may take significant longer time and may need more programming effort

to compute VaR-I than VaR.
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Table 10 Comparison of efficiency for intra-horizon risk estimation
Method Risk Estimate Sample Tyen +Test  Teva T(=Tyent+ Estimated Resampled
Measure (SD) size FToet + Tova) RE (SD) RE
Panel A: Merton’s jump-diffusion model (MJD)
p=0.01
This paper VaR-I  1.2615(0.0119) 48231 66317  0.0183 66.336 0.0087(0.0009)  0.0095
VaR 1.1750(0.0121) 51574 68.201  0.0247 68.226 0.0092(0.0010)  0.0103
Heidelberger & Lewis (1984) VaR-I 1.2797(0.0143) 350 21.920 2170.1 2192.0 N.A. 0.0112
VaR 1.1653(0. 0133) 400 25.320  2506.7 2532.0 N.A. 0.0114
Bakshi & Panayotov (2010) VaR-I =~ 1.2724(N.A.) N.A. N.A. N.A. 222.39 N.A. N.A.
VaR  1.1762(N.A)  NA. N.A.  NA. 14.208 N.A. N.A.
»=0.001
This paper VaR-1 1.3640(0.0126) 146790 162.51 0.0749 162.59 0.0086(0.0011) 0.0093
VaR 1.3055(0.0133) 192570  261.85  0.1124 261.97 0.0090(0.0012)  0.0102
Heidelberger & Lewis (1984) VaR-I 1.3722(0.0159) 120 79.663  7886.6 7966.3 N.A. 0.0116
VaR 1.2991(0. 0161) 140 98.823 9783.4 9882.3 N.A. 0.0124
Bakshi & Panayotov (2010) VaR-I ~ 1.3695(N.A.) N.A. N.A. N.A. 218.55 N.A. N.A.
VaR  1.3101(N.A)  NA. NA.  NA. 12.684 N.A. NA.
Panel B: Double exponential model (DEM)
p=0.01
This paper VaR-1 1.3053(0.0116) 49605 60.658  0.0234 60.682 0.0080(0.0011)  0.0089
VaR 1.1847(0.0115) 60332 98.019  0.0355 98.054 0.0091(0.0008)  0.0097
Heidelberger & Lewis (1984) VaR-I 1.2967(0.0146) 420 32.782 3245.4 3278.3 N.A. 0.0113
VaR 1.1859(0. 0135) 500 36.325 3596.2 3632.5 N.A. 0.0114
Kou & Wang (2003) VaR-I  1.3078(N.A.) N.A. N.A. N.A. 2.0742 N.A. N.A.
VaR  1.1982(N.A)  NA. NA.  NA. 26.032 N.A. N.A.
= 0.001
This paper VaR-1 1.4481(0.0131) 365081  410.31  0.1731 410.48 0.0084(0.0009)  0.0091
VaR 1.3612(0.0133) 384120 477.11 0.1823 477.29 0.0087(0.0011) 0.0098
Heidelberger & Lewis (1984) VaR-I 1.4417(0.0168) 200 156.41 15485 15641 N.A. 0.0117
VaR 1.3667(0 0165) 250 203.73 20170 20373 N.A. 0.0121
Kou & Wang (2003) VaR-I  1.4463(N.A.) N.A. N.A. N.A. 2.7981 N.A. N.A.
VaR 1.3704(N.A.) N.A. N.A. N.A. 21.371 N.A. N.A.
Panel C: Exponentially dampened power law model (CGMY)
p=0.01
This paper VaR-1 1.2590(0.0128) 45386 52.993 0.0156 53.009 0.0096(0.0012) 0.0102
VaR 1.1775(0.0113) 71807 92.139 0.0394 92.178 0.0086(0.0014) 0.0096
Heidelberger & Lewis (1984) VaR-I ~ 1.2469(0.0137) 410 42.481  4205.6 4248.1 N.A. 0.0110
VaR 1.1629(0. 0221) 430 45.196 4474.5 4519.7 N.A. 0.0119
Bakshi & Panayotov (2010) VaR-I 1.3224(N.A.) N.A. N.A. N.A. 639.43 N.A. N.A.
VaR 1.1945(N.A.) N.A. N.A. N.A. 17.272 N.A. N.A.
p=0.001
This paper VaR-1 1.4225(0.0147) 191260 230.16 0.1142 230.27 0.0094(0.0015) 0.0104
VaR 1.3649(0.0117) 318193 445.98 0.1561 446.14 0.0075(0.0017) 0.0097
Heidelberger & Lewis (1984) VaR-I ~ 1.4408(0.0177) 130 128.41 12712 12840 N.A. 0.0123
VaR 1.3658(0. 015()) 200 185.06 18321 18506 N.A. 0.0114
Bakshi & Panayotov (2010) VaR-I 1.4792(N.A.) N.A. N.A. N.A. 859.95 N.A. N.A.
VaR  13905(N.A.)  N.A. NA.  NA. 15.217 N.A. N.A.

Note. A comparion of our simulation method with other methods in terms of computing time by controlling the relative error to be around
1%. Each simulation path has 4000 points. The PIDE methods for two models (MJD and CGMY) use 400 x 400 grids. Parameters for all
underlying asset models are taken from the MLE method. The mean and SD of Estimated RE is based on 100 repeats, and resampled RE is
computed with 100 replications. Each reported CPU time is in seconds.

6. Application 2: Comparison of Relative Errors for VaR, Median Shortfall, and
Expected Shortfall

As risk measures, VaR and ES have their own advantages and disadvantages. Which one to choose
depends on one’s own internal and external objectives. The comparisons between VaR and ES have

been done in terms of sub-additivity (Artzner et al. 1999, Rockafellar 2002), robustness (Cont et
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al. 2010, Heyde, Kou and Peng 2013) and elicitablity (Kou and Peng 2014). With the expansions
for the relative errors, we can offer a new theoretical comparison of VaR and ES in terms of relative
errors for both dependent and i.i.d samples. Note that the larger relative errors, more difficult
to simulate. Previously, Yamai and Yoshiba (2005) and Dowd and Cotter (2007) did numerical

comparisons of relative errors for i.i.d samples.

THEOREM 2. (VaR and ES)
(1) (Dependent samples) Under the conditions of Assumptions A, B, C, we have

lim RE(vn(p)) _ PO
n—00 RE(Cn(p)) Uf(v)o-oo,c

where o2, = {p(1 —p) + 2555, (B}, 0%, = fvar{(v — L) + 2555, 2a()}.
(2) (I.1.D. samples) Under the conditions of Assumptions A1, B1, C, and assuming the existence

< 00

of lim,_, _ o xh' (x) and lim,_, . h(zx), where h(zx)= ff((?), we have
lim lim RE(v,(p)) < i

p=0n=o0 RE(cq(p)) — /2

Proof. See E-Companion EC.3. [

Many distributions satisfy the regular conditions in Theorem 2 (2), i.e. Pareto distribution,
exponential distribution, Normal distribution, Cauchy distribution, Weibull distribution, etc. In
part (1) of Theorem 2, the limit of ratio of REs of VaR and ES is finite, implying that the
convergence rate of RE(c,(p)) is perhaps comparable to that of RE(v,(p)). However, our numerical
study of Figure 4 suggests that in some dependent cases, it is easier to simulate VaR than ES. The
part (2) of Theorem 2 indicates that for i.i.d. losses, it is easier to simulate VaR than ES, which is
also confirmed in our numerical study of Figure 4.

As in Kou and Peng (2014), median shortfall (MS) is proposed as an alternative risk measure
to expected shortfall (ES) due to its elicitability and robustness. MS is defined as the median
loss conditioning on the loss beyond certain VaR level. According to Kou and Peng (2014), MS
at level p (i.e. m(p)) is exactly the VaR at level £ (i.e. v(%)), i.e. m(p) =v(%). Naturally, median
shortfall m(p) can be estimated by estimator v, (%). Under our framework, we can also compare

the estimators of MS and ES with respect to their relative errors.

THEOREM 3. (MS and ES)
(1) (Dependent samples) Under the conditions of Assumptions A, B, C:

i BEaP) _ ep)pocom

n—oo RE(c,(p))  m(p)f(m(p))oe,

where O'go,m = {1/2])(1 —p/2) + 2 Z}jozl 73(]43)}, "}/3(]{7) = COU{l{L1<v(p/2)}, 1{Lk+1<v(p/2)}}ﬂ 05076 =
{var[(v—L)*]+235,7, 12(k)}.
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Figure 4  Ratio of REs of VaR and ES as p varies.
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Note. Left graph reports ratio for loss samples satisfy MA(1) Model: Li+1 = 0.5¢; + €141, € ~ N(0,1). Right graph
reports the case of i.i.d. loss with p.d.f satisfies f(z) =e"1{;<0y and f(z) = (1— %)7K711{$<0}. Sample size is chosen
to be 10°, and p varies from 0.0002 to 0.01. Resampled REs are based on 200 times repetition. The ratio in most

cases is less than 1, indicating that the relative error for VaR is smaller than that of ES for both models.

(2) (I.1.D. samples) Under the conditions of Assumptions A1, B1, C, denote ;}((2)) = h(x), and

assume the existence of lim,_, _o xh’ (x) and lim,_, . h(x). Moreover, we assume 30 <1 such

that w is a slowly varying function at p=0. Then

. RE(ma(p))
lim lim —— )
ponoe RE(co(p)) =

Proof.  See E-Companion EC.3. [

Many commonly used distributions satisfy the conditions in Theorem 3 (2), including Pareto
distribution, exponential distribution, Normal distribution, Cauchy distribution, Weibull distribu-
tion. Particularly, the slowly varying condition can also be satisfied by these distribution families.
For instance, for exponential distribution, W is a log function for some 6 and hence is a
slowly varying function, and for Pareto distribution, W is constant for some 6 and hence is

also a slowly varying function.

7. Conclusion

This paper gives rigorous expansions of relative errors for both VaR and expected shortfall under
the a—mixing model, which appear to be new even for i.i.d. samples. With the necessary sample size
being computed using the new asymptotic expansions, we propose a general framework to simulate
these risk measures via a sorting algorithm. In our extensive numerical study, and by comparing
with existing algorithms in Heidelberger and Lewis (1984), Sun and Hong (2010), Glasserman et al.
(2000), Glasserman et al. (2002) and Fuh et al. (2011), we find that the new algorithm is fast and
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accurate, even at the 0.001 quantile level. Two applications are also given, including the estimation
of intra-horizon risk and a comparison of the relative errors of VaR and expected shortfall.

One should also be cautious about our numerical findings. In our numerical study the 0.001
quantile level is suitable for many applications, as the standard risk management guidance (e.g.
Basel Accords) in financial industry requires computing risk measures with moderate quantile, i.e.
between 0.01 and 0.001. However, if one wants to estimate VaR and expected shortfall at level
below 0.001, then other simulation methods, such as the ones based on importance sampling may
be more suitable, at least one should think of extending the method of importance sampling to the

simulation of dependent samples.

Appendix A: Regular Conditions

Here we state some assumptions listed as regular conditions in our theorems and lemmas.
1. Assumption A: Sample Ly,---, L, are strictly stationary and geometric a—mixing. Each L;
is has a density f and a distribution function F'.
2. Assumption Al: Samples Li,---,L, are i.i.d. Each L; is has a density f and a distribution
function F.
3. Assumption B: With v = inf{x : F(x) > p}, the density f of F satisfies vf(v) <0, and f
is Holder continuous with index 1/2 + 6o(dp > 0) in a neighborhood of v, i.e. there exists a

constant cy such that
[f(y1) — fly2)| < emlyr — y2‘1/2+507

for all ¥, and ¥, in a neighborhood of v.
4. Assumption Bl: With v = inf{z : F(x) > p}, the density f of F satisties xf(x) <0, for all
x <w, and f is Holder continuous with index 1/2+ d¢(dp > 0) in a neighborhood of v, i.e. there

exists a constant cy such that

|f(y1) = fy2)| < carlys — ya| /2100,

for all ¥, and ¥, in a neighborhood of v.
5. Assumption C: E|L|**° < oo for some § > 0.
6. Assumption Cl: E|L| < oc.
Many distributions satisfy Assumption B, i.e. Pareto distribution, exponential distribution, nor-
mal distribution, Cauchy distribution, Weibull distribution, etc. Assumption Bl is provided to
ensure the existence of the limit for the ratio of REs. The distributions aforementioned also satisfy

this assumption.
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Appendix B: Two Counter Examples

Example 1. Let Z, =2+ T, + ﬁN(O,l), where z is a positive constant and P(7,, =n) =
1/n,P(T,,=0)=1-1/n. Suppose T,, and N(0,1) are independent. Since /nT,, — 0 in probability,
we have y/n(Z, —z) = N(0,1). Then the heuristic approximation suggests that the relative error
of Z, can be approximated by 1/(zy/n). However, since var(Z,) =n+1/n and EZ, = z+ 1, we
have RE(Z,) = \/var(Z,)/EZ, =\/(n+1/n)/(z +1) — oo as n — oo, which is different from the
heuristic approximation of 1/(z/n).

Example 2. (A) Consider X, (w) = %1{%2951} + (% +n2)1{0§w<ni2}- Then P(|n'~¢X,|>0) =
1/n* =0, and hence X,, = 0,(n~""). We also have that E(X,) =14 0(+). A heuristic approxima-
tion implies that relative error of X,, might be approximated by o(n~'"). However, since EX?2 =
O(n*) — oo as n — oo, we have that RE(X,) = O(n*) — oo, which is different from the heuristic
result based on convergence in probability. (B) Define random variables as Y,, = 2"1y, +n"'1y,,
where U, V,, are defined recursively: U; = (0,1/3)U(2/3,1),V; =[1/3,2/3],if Uy = Ufil(ai,bi), Vi =
U2 es, dy], then Upyr = U2 (as,as + (b — ;) /3) U (a; + 2(b; — 1) /3,b), Vs = Vi U2, [as + (b —

a;)/3,a;+2(b; —a;)/3]. Since >, P(|Y,| > 1/n) =37 (2/3)* < 0o, by Borel-Cantelli Lemma, we
have Y,, = O,.(1/n). We also have that EY, =(4/3)" 4+ O(1/n)=0((4/3)™). A heuristic approx-
imation may suggest that the relative error of Y,, can be approximated by O(n~'(4/3)~™) — 0.
However, since EY,> = 0((8/3)") — oo, we have that RE(Y,) = O(2") — oo, which is different from

the heuristic result based on almost sure convergence.

Appendix C: Three Models in Estimating Intra-Horizon Risk

1. Merton’s jump-diffusion model (MJD). Denote log return X (t) =log(S(t)/S(0)). Merton’s
jump diffusion model is given by dX; = udt + ocdW; + dJ;, where o > 0 is the diffusion volatility, W;
is the standard Brownian motion, and {.J;,¢ > 0} is a compound Poisson process having intensity

A > 0 and normally distributed jump sizes with mean p and standard deviation o;. The Lévy

measure is k[z] = Jme xp{— %} s € R,o5 € RT. We assume the expected return is equal
to zero, so the drift is u = —(0?/2) — )\(exp (g +0%/2) — 1). The characteristic function of log
price X is E[e’*t] = exp (z’uut — @ + At(exp (tupy — u2203) — 1))

2. Double exponential model (DEM). Denote log return X (t) =log(S(¢)/S(0)). The double
exponential jump diffusion model is given by dX (t) = udt + odW (t) +dJ(t), where J(t) = Zfi(lt) Y;

is the jump process with N(¢) a Poisson process with intensity A. Y has double exponential

density fy(y) ~ pme "Y1q,501 + qnae™1pyc0y, p+q=1 and ¢ := E(e¥)-1= 711;”11 + nq;fl — 1.
To ensure expected return to be zero, we have y=r — %02 — A(. The characteristic function

is B = exp {iqut — 5% 4t [ (e — 1~ duyl <0 )T(dy) |, where TI(dy) = A+ fy (y)dy =
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Apine” "V Lys01dy + Agnpe™ 1y <opdy and v = p+ E[V1gyicy] =7 = A+ Ap(=e — ™) —
)\q(% —e ).

3. Exponential dampened power law model (CGMY). Denote log return X(t) =
log(S(t)/S(0)). The CGMY model is given by dX; = udt+d.J;, where J; is a pure-jump Lévy process
with Lévy measure: k[z] = C“%iffl}l{z@} + Ce""j{%’”}l{wo}, where G, M,C € R*. We assume
the expected return is equal to zero, so the drift is y= —CT(=Y){(M —-1)" — MY +(G+1)¥ -G"}.

The characteristic function is E[e™*t] = exp (iu#t +CT(-Y) ((M —iu) = MY +(G+iu)¥ — G’Y> ) .
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E-Companion of “Simulating Risk Measures with Estimated Relative Error” by
Wei Jiang and Steven Kou

EC.1. Proof of Lemma 1 and Related Algorithms

EC.1.1. Algorithms
Naive Monte Carlo: Estimation of VaR and ES without sorting method.
Step 1 Generate N loss samples {L;,---,Ly}.
Step 2 Define empirical function Fy(x) = % EZ\; l{r,<q}- For i =1: N, denote T; = Fn(L;), if
T; > p, we have Ch; =1, else Ch; = —1.
Step 8 Estimate of VaR and ES by vy = min{L; * Ch;,i =1: N} and cy = vy — N%)Zfil(vjv -
L)l <ony-
Bubble/Quick sorted Monte Carlo The Bubble/Quick sorted Monte Carlo algorithm means
only the S-step (from sub-step 1 to sub-step 3) in the algorithm of sorted Monte Carlo with
estimated RE. Bubble (Quick) sorted Monte Carlo means the bubble (quick) sorting method is

used in the sub-step 2.

EC.1.2. Proof of Lemma 1

Proof. Suppose the time required to do one simple action is bounded by ¢; and ¢, is the time
to generate one loss sample. We try to find the relationship between ¢, and ¢; first. Suppose to
simulate one portfolio loss sample we need M different random variables with length nq,--- ,ny
and need K simple actions to put up them together. Then we have t, = (Zf‘il P(n;)) xt1+ K xtq,
where P(-) is the polynomial complexity function in terms of the length of the generated random
number (see Viola 2004). Given the above complexity of generating loss samples, we can clarify
the complexity for each algorithm by working out the number of simple actions in each step of the
Monte Carlo method.

More precisely, for naive Monte Carlo, given the number of loss samples N, the complexity of
step 1is N xty = N x (X1, P(n;) + K) x t,. Complexity of step 2 is (2N +1) x N x t; + N x t; =
((2N +1)N + N) x t;. Complexity of step 3 is (2N) x t; for VaR and (2N) x t; + (3N) x t; + 3t; =
(5N +3) x t; for ES. Then the summation of complexity for three steps is O(N?) and hence the
complexity of naive Monte Carlo is O(N?). Similarly, for the Bubble (Quick) sorted Monte Carlo,
complexity for sub-step 1is N x t, = N X (Zf\il P(n;)+ K) x t;. Complexity of sub-step 2 is exactly
the complexity of the bubble (quick) sorting algorithm. Complexity of sub-step 3 is 3t; for VaR
and (3N +6) x t; for ES. Since complexity for Bubble Sort and Quick Sort are O(N?), O(N log N)
respectively (see Knuth, 1973, Sedgewick, 1989), the computational complexity for Bubble sorted
Monte Carlo and Quick sorted Monte Carlo are O(N?), O(N log N) respectively. [
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EC.2. Proof of Theorem 1

Let’s firstly state some useful lemmas. The following lemma is a simple extension of lemma 3 in

Liu and Yang (2012).

LEMMA 2. (1) Let h(x) be a nonnegative function, such that there exists (o >0, h(x) <z for
all sufficiently large z. (2) Q(v,n) is a function depending on v and n, such that Q(v,n) — 0 as
n— 00 or v— 0. If for all (;,A>0, 9=V Q(v,n) — 0 is satisfied, and there exists (; >0, such
that A\((1 +1) < ¢ and n2Q(v,n) — oo then:

A A

/On h(a;)(I)(—x—l—o(:cClQ(v,n)))dx:/On h(w)®(—a)da +o(Q(v,n)),

where ®(-) is the cumulative distribution function of normal distribution. In addition, we define
a(n,z) = o(z1Q(v,n)) if a(n,z)z=1Q(v,n)™* = 0 as n — oo uniformly for x € (e;,n*) for any

€1>0.

Proof. We split the integral into two parts:

n? (logn)
/0 h(2)®(— + 0(z1Q(v,n))) = / h(2)®(—z + o(z1Q(v,n))

' 2)®(—2 4 o(z1Q(v,n
f bR toa Q)

We firstly analyze the second term. Since z € ((logn)?,n*), then for large enough n, we have —x(1

o(#©VQ(v,n))) < ~5"% and hence ®(—x + oz Q(v,n))) = B(~a(L + o(z " Q(v,n))))
A

B(— %) Then we obtain [ o h(2)®(—z + 0(z1Q(v,n))) < nM OV (- Uogm®y — o(Q(v,m)).

Next, we consider the first term. Noticing that for all ¢; <z < (logn)?, we have

+
<

z+0(z1Q(v,n)) 1 —22/2
1) e e

T

O(—x+o(x1Q(v,n))) — ®(—x)

o(-a)etQu,n) T (- 2 Q)
inf{ e 2, e (R 2 o(30.Q v, n))
- D(—a)e x 29 Q(v, 1)
— 0
inf {—Le=22/2,_L_ —(a+o(a$19(")))2/2
where the last convergence part holds due to that Vi ‘/g”(_m)x is bounded
and %((:"))) — 0. Hence there is ®(—x + o(z1Q(v,n))) = (1 4+ o(z ' Q(v,n)))P(—x), for x €

[e1, (logn)?]. Then we obtain

(logn)2
/ (—z+ 0(z51Q(v, 1))

<logn>2 @
/ (ma-+ o Q)+ [ h@)@(=a-+ ol Q(u.m)
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€1

(logn)? (logn)?
_ / h(@)(—z)dz + / h(@)®(—2)o(z 1 Q (v, n))d + / h(@)[®(—2) + 0(z% Q(v, n))|dz

€1 0

€1

(logn)? (logn)?
:/0 h(x)q)(—x)dx—l—/ h(a:)CI)(—a:)o(x<1+1Q(v,n))dx—l—/ h(z)o(z'Q(v,n))dx

(logn)? ’ 0
:/0 h(z)®(~)dx + o(Q(v,n)).

The last equality holds due to that by the definition of o(z*™'Q(v,n)), for any e,
we can choose large emough n such that [["h(z)o(z1Q(v,n))dz]/Q(v,n) < €/2 and
[fe(llogn)Z h(z)®(—x)o(x1 1 Q(v,n))dz]/Q(v,n) < € /2. The conclusion follows by combining the first
term and the second term. [J

The following lemma taken from Tikhomirov (1980) is the Berry-Essen type bound which eval-

uates the distance between an empirical distribution and the normal distribution for a sequence of

dependent random variables.

LEMMA 3. Let {X;};>1 be a sequence of stationary a—mizing random variables with zero mean
and finite variances. There exist constants ¢, >0 and p € (0,1) such that the a—mixing coefficient
a(n) satisfies a(n) < c,p™ for all n. There also exist constants §,0 < & <1 such that E|X|*T° < oo.

Then there is and A depending just on ¢, p and § such that

sup |F,(2) — ®(2)| < An’*log' " n,

where F,(2) = P( -3 X; <2),00 = EQC]_, X;)*, and ®(-) is the normal distribution func-

tion.
The following lemma taken from Merlevede, Peligrad and Rio (2009) is the Bernstein type of
inequality for dependent random variables. We can use it to estimate the tail probability of the

sum of dependent random variables.

LEMMA 4. Let (X;);>1 be a sequence of centered real-valued random variables. Suppose that the
sequence satisfies geometric a—mizing with coefficient a(n) < c,p™ and there exists a positive M
such that sup;s, || Xi||cc < M. Then there are positive constants Cy and Cy depending only on p

such that for allm > 2 and t satisfying t < we have

1
C1M(logn)2’

Cot?(né? + M?)
log E <
og (eXp(tSn)) - 1= CltM(log n)Q’

where S, =31 Xi and the 6* is defined by 6* = sup;.(var(X;) +23 ., [cov(X;, X;)|).

In terms of probabilities, there is a constant Cs depending only on p such that for all n > 2,

Csz? )

P(S,| > ) <exp ~ 62+ M2 + zM(logn)?
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The following lemma, which is a combination of Corollary 1.1 from Bosq (1998) and Lemma
2.1 from Davydov (1968), proves the boundedness of the covariance coefficient for two random

variables with a—mixing coefficient a.

LEMMA 5. (1)Let X and Y be two real valued random wvariables with a—mixing coefficient «
such that X € L(P),Y € L"(P) where ¢ > 1,r > 1 and % +1=1- %, then [Cov(X,Y)| <
2p(2a)V?(| X || ||V ]l (Davydov’s inequality) . In particular, if X € L>*(P),Y € L>*(P) then
|Cov(X,Y)| < 4]|X||||Y||eocx (Billingsley’s inequality) . (2) Let Y1,Ys,--- be r.v.s centered at
their expectation, bounded by M, say, and forming an a—mixing sequence with mixing coeffi-
cients a(n) such that Y .~ «a(n) <oco. Let & and n be r.v.’s such that & is Ff—measurable, n is
FiS,,—measurable, |n| < My and E|£|? < co for some ¢ >1. Then |Cov(&,n)| < 6Moa(n)'=/1|¢]|,.

The following lemma from Yokoyama (1980) gives moment bounds for a—mixing sequences. We
should notice that the condition in this lemma is satisfied for stationary geometric a—mixing time

series.

LEMMA 6. Let {X;} be a strictly stationary a—mizing sequence with EX; =0 and E|X | < oo
for some r>2 and 6 >0. If Y7 (i+1)"/27a(i)]*/ "+ < oo, then there exists a constant K such
that E|S,|" < Kn'/2.

With the help of lemmas 2, 3, 4, 5, and 6, we can prove the following Theorems 4 and 5 about
the approximation of moments of VaR and ES, which is fundamental for our expansion of RE.
Note that this theorem are for both dependent samples and i.i.d samples, while similar existing
results of VaR are only applied to i.i.d samples under stronger conditions (see Hall and Martin

(1988) and Reiss (1989)).

THEOREM 4. Under the conditions of Assumptions A, B, C1, for integer m > 0:

o.m
E(v, —v)™ = f(:)vm EZ™n ™2 4 o(n=m/271/4), (ec.1)

Where Z satisfies standard Normal distribution and o} , = {p(1 — p) + 25 Iy (k)}, k) =

CO’U{l{Ll <v}s 1{Lk+1 <U}}'

Proof. Since EX™ = [ _ ma™ 'P(X >z)dx — [, _ ma™ 'P(X <x)dx, we only need to com-
pute the following probability:

n

P(n*?(v, —v) >z)=P(F,(v+azn~?) <p)= P(Z(I{Ligwmml/?} —p)<0).
i=1
For some A € (0, ﬁ), we try to estimate this probability in the following three cases: 0 < x <
n*,n* <z <cy/n, and z > ¢y/n. Here c is a very small constant comparing with v. The calculation

of P(n'/?(v, —v) <) in the region z < 0 is the same as that for z > 0.
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Case 1: 0 <z < n* Denote Woni = I1p cpipn-1/2y — F(v + 2n7 %) and let o,(z) =

\/ %var(ZLl Weni). We can see that {W, ,;} is a sequence of stationary geometric a—mixing

random variables with zero mean and finite moments, then according to lemma 3, one obtains

n Y Wani v+anl/?) —

P(Z(I{Liévmn*l”} —p)<0) = P(Z\}_ﬁlaz;;ﬂ <= Ut(:lf)/\/?Z )

B Flo+an=Y?)—p
on(z)/Vn

where there exists a constant A such that |Ds(x)| < An~'/?log®n.

= O(—

)+ D3(x)

Case 2: n* <z < ¢y/n. Since in this case xn~/? < ¢, where c is very small constant, hence

vtan /2 . . .
(Flo+an™/?) —p)= [ * f(z)dz ~ f(v)zn=2. We can easily verify that {W,,;}i>1 is a

)

sequence of centered real-valued random variables satisfying geometric a—mixing and bounding
by 1. Hence the conditions in lemma 4 are satisfied by {W, ,,;}:;>1 and we can use this Bernstein

type of inequality for dependent case to obtain:

n

P(Z(I{Ligv-‘rwn_l/?} _p) < 0) = P(Z Wz,n,i < _n(F(U + xn—1/2) _p))
i=1

* Con(P (ot aon ) =)y
5in+1+ (n(F(v+an=1/2)—p))(logn)?/’

< exp (-

where 67 = sup,.o(var(W, ;) + 2Ej>i’COU(Wz,n,th,n,j)D' Since {W, ,.i}tiso is a stationary
sequence, we have 6% = var(Wy 1) + 23,01 |cov(Wy 1, We pj)|. For small ¢, var(W, 1) ~
var(Wy 1) = F(v)(1 — F(v)). Furthermore, based on Billingsley’s inequality in lemma 5 (1),

cov(Won.is Wa ;) is bounded by geometric form of a—mixing coefficient a(|j —i|) < c,pl~l, and

hence 3~ |cov(Wy i, Wi n ;)| is bounded. Therefore 67 is bounded. Then we have
SO .00 ull B50) N GO Cyf (v)a*n >
a’n+1+ (n(F(v+zn=1/2)—p))(logn)? gin+1+ f(v)zn=1/2(logn)?
< exp ( — /ﬁl‘)
<a?

9

where s can take a large enough positive integer and x,; is some constant depending on Cj, f(v)
and ;. Hence we prove that for n* <z <cy/n, P(31_ (I <\ypn-1/2y —p) <0) <a7*

Case 3: =z > cy/n. Let A = %;/1\/2_”. Since P(3°7, (I{1,<yian-1/2y — P) < 0) is a non-
increasing function of 2, hence P(371, (I, <, n-172y —P) <Olz > cy/n) <P (I cpipn-1/2) —
p) < 0|z = cy/n) < (¢y/n)~*. Then there are two subcases: (1)for ¢y/n < x < n, one sees:
P (I coran—1/2y = D) <0) < (ey/n) ™ = O(z=%/%). (2)For x > n, we still use the same way
as in case 2. As x> n, = > /n>>2[v|, then 1> F(v+an~"/?) > F(izn /%) >1and 1 - F(v+

xn~ V%) = Bl syion-1/2y < % Along with o, (z) = \/%UGT(Zyzl Wini) < \/ZZL:I EW?, . <
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V(1= Fo+an=2))F(v+an1/2) < [nr2E we have A > 22 > \/E’fl“, where ko

§xn*1/2’ E|L| =2 v/ E|L|
2

is some constant depending on p. Similar to case 2, we apply lemma 4 and obtain

n

P(Z(I{Li§v+wn_1/2} _p) < O) = P(Z Wz,n,i < _n(F(U —l—xn_1/2) _p))
i=1

S Wans _ Flotan™) p
Vioe) @

<ex (— Col” )
= P ain+1+ A(logn)?/’

:P(

where 65 = SuPi>0(Uar(Wm,n,i/(\/ﬁo'n(x))) + 22j>i |COU(W:L’nZ/(\/ﬁan(x))awrn]/(\/ﬁon(x))”)
We should notice that based on Billingsley’s inequality in lemma 5 (1), both 62 x (no,(x)?) and
on(x)? are bounded. Hence nd3 is bounded, and we have

2 ~1/47 JFTT2
CgA ) < exp ( _ Cg(/ﬁlg\/fn / E|L|) )

an+1+ A(logn)? Gin+ 1+ ke/an=1/4/\/E|L|(logn)?
< exp (—rzz'’?)

exp (—

<z’

I

where k3 is some constant depending on Cs, ko, and E|L|. Therefore, we prove that for = > ¢\/n,
tail probability P(3°", (I(), <,ipn-1/2y —P) < 0) is also bounded by z*.
Summarizing case 2 and case 3, one obtains

m—lP > id </ m—1 —s/2d =0 —t
/7;>‘ mx (v U+\/ﬁ)$_ " me x x (n™")

where ¢ can be a large enough integer. Then we obtain

o0 ’n,)\
m—1 € m—1
mz P(vn>v+)dac:/ ma™  P(v, >v+
/ Vi " s

el
vn
n)\
= / max™H®(—A) +O(n"?log’n)]dx 4+ O(n™)
0

Jdz+0(n™")

n)\
= / mx™rO(—A)dr + O(n™ " 2log*n) + O(n™") (ec.2)
0

n? . . v zn_1/2 —
To compute the term [ ma™ '®(—A)dzr in (ec.2), we need to estimate A = W.

Firstly, we consider the denominator of A and prove that o,(x) = (1+ O(zn=/2))0,(0). By defi-
nition,

1 n n—1 .
o ()% = Evar(z W) = var(Wa ) +2 Y (1 - %)COU(WI,HJ, Wonis1).

Here var(W,,1) = F(v + 2zn V%) (1 — F(v + 2n~?)) = (1 + O(zn~Y2))F(v)(1 — F(v)) = (1 +

O(xn=12))var(Wy,.1). For the covariance part, since W, ,; is centered real-value r.v, we have
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‘cov(WrnhWrnH—l) - COU(WOn17WOni+1)‘ = ’EWznlwrni—i-l EWOn1WOn1+1| < ‘E( z,n,l
WO,n,l)W:c n z+l’+ ’E( z,n,i+1 " WO n 1—0—1)W0n 1‘ Slnce ‘Wz n 1‘ <1 and E‘( z,n,i+1 W0,77,,i+1” <00

for any ¢ > 1, according to lemma 5 (2), if we take 1/¢ =1 — €, for some small e > 0, then

|E(Wa:,n,i+1 - WO,n,iJrl) z,n, 1| < 60&( )1 1/q[E|Wz n,i+1 WO,n,i+1|q]1/q
< 6(cap’)?[E|Wypiv1 — Wonia|]' ™
< 6C€2p62l[Ell{'u<Lz+l<'u+:rn—1/2} (F(U+$n71/2) - F(U))HI%Q
< 6c2p'2(1 — (F(v+an™?) = F(v)))(F(v+an™'/?) — F(v))]'~

< 66;2p€2i0($n71/2)1752.

Similarly, we have |E(W, 1 — Won1)Waniv1] = 6c2p2O(xn~1/?)1=<2. Hence we have

n—1 .
i .
on(x)* = (1+0(xzn ) )war(Wy n.1) + 2 Z(l - E)[COU(WOWJ, Wom.is1) +12¢2p2°O(xn~1/2) 2]

i=1

n—1

= var(Wo 1)+ 22 (1—— cov(Wo s Wonit1) + O(zn~1/?)1 e
n
i=1

= 0,(0)3(1 4+ O(zn~1/2)1=<2),

where the last equality holds because o,,(0) is bounded.

Next, we show that A = F(”J:f:(;;;z)\/%”“) = zf(”) +1nf{0( 3/2H00p=1/4=00/2) (g2 2 ~1/2+1/2e2) ]

With Assumption B about the Holder continuous of the density function f(-), we have

-1/2 —-1/2

Fwdu= g+ [ ()~ fo)du
—1/2

v+zxn
< f(v)a:n_l/2+/ cr(u—v)Y* oy,

v
— f(v)xnfl/Q+O(w3/2+60n73/471/260)'

v4zxn
Fv+zn %) —F(v) = /

Using o,,(z)? = (1+ O(zn~'/2))0,(0)?, we have

Fv+an~1?) - F(v) _ f(w)an=t2 4 O(z3/#+%0p=3/4=1/2%0)

on(x)/Vn 0,00/ +0@xn72)1=2)/\/n

B to<<>+O@W”%*“”“wu+omw”%“%

A =

v

3/2460, —1/4—60/2 2 ey, —1/241/2en
5 +inf{O(z n ),0(z"n )}

_ zf(v)
(

UTL

where ¢,,(0)2=p(1 —p) + 237 (1 —i/n)y (i), 71 (i) = cov(1{L, <v}, 1{L,,,<v})- Then according to

lemma 2, one obtains

/ mz™ P (— dx—/ mz™ P (— f(v))da?—l—o(n*l/‘l).
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Since A € (0, 7), we have mA —1/2 < —1/4. Using (ec.2) we have

/0 ma™ ' P(v, —v>z)dx = nm/Z/ mx™ 1P(vn>v+ﬁ)d

— ( /O ma™ (= A)dz 4+ O(n™ 1 2log*n) +O(n‘t))

nm/2

n
— 1 ml‘m_l‘b(—xf(v) )dm+o(n_1/4_m/2)

nm/2 0 Un(())

_ (O)m ma™ ! o 4 o(n~1/4—m/2
2O [ e ol

= J"(O)m ma™ ! x — ma™ ! T o(n~1/4—m/2
SR0E / B(—2)a / B(—r)dr) + ofn /4

where the last equality holds due to that f Y ma" T @(—z)dr < \/(—n*) [ mam /@ (—x)dr =
O(\/®(—n?*)) = o(n~1/4=m/2),
Approximations of P(v, —v < z) for <0 are the same. Therefore,
E(v, —v)™ =n ™20 7(0)" EZ™ 4 o(n~Y/4"m/?),
flw)m
where Z is standard normally distributed r.v. Furthermore, since E|1{;.}|? < oo for any ¢ > 0,

lemma 5 implies that |y;(7)| is bounded by some geometric series and we have Z;:ll i/ny (i) =

O(n~!'). Hence

72(0)? = p(1=p) 4231~ i/mm () =p(L ~p) +2Y_7(0)+ O™

i=1

Then we can replace 0,,(0)* by 02 ,:==p(1—p)+23" " 41(i) and obtain
O-m

E v, — v mo_ n,v Ezmnfm/2+0 n71/47m/2 ,

(o —0)" = 2 ( )

from which the result is proved. 0O

THEOREM 5. Under the conditions of Assumptions A, B, C, for m=1,2, we have:

0.m
E(c, —c)™ = 2EZ™n ™2 4 o(n /27 1/4+e), (ec.3)
pm

where Z satisfies standard Normal distribution and o? , = {var[(v—L1)T]+2>,_ 72(k)}, 2(k) =
cov{(v—Ly)",(v— L))"}

Proof. There are three steps to prove this result.

Step 1. We prove that ES estimator ¢, satisfies equation ¢, =v— L 3"" (v—L;)" + B,, where

np

|Bu| < 5 lvn = v|(|1Fa(vn) = Fu(0) |+ [Fa(va) = F(v)]) < 5vn = 0|2 Fo (vn) = Fa(v) |+ Fo (v) = F(v))).
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This result is based on derivations in Sun and Hong (2010). By definition, one obtains ¢, = v, —

o i1 (U — L)t =0 — 2570 (v — L))" + (v —v) — ;5 302, ((ve — Li)™ — (v — L;)*). Hence,
By = (vn—v) = o 3 (0n = L)t = (v=Li) ") = (0 =) — 55 2200 (v =) Lz, <00)) — 55 2oimy (0=
Li)(Lizi<ony — Lizizoy)- Since (v, —v) = ;23700 ((vn = 0)L{z,<0,1) = 5 (0 — 0)(F(v) — F(v,)) and
o5 i (V= L) (Lz, <0y — Lizi<op)| < Slvn = vl[Fu(va) — Fu(v)], thus [By| < v, — o[ (|Fo(va) —
Fo(0)] +1F(va) = F(v)]) < Slon = v[(2|Fo(vn) — Fo(0)| + [ Fo(v) = F(0)]).

Step 2. We prove E|B,|F = o(n=%/271/2%€) for k > 0. According to step 1, | B,|* can be bounded
by kv = v[*|Fy(vn) = Fo(0)[* and pfv, — v[*[F,(v) — F(v)[*. We firstly consider the bound of

pik‘vn _U|k|Fn(Un) - Fn(v)’k>

1 k k

E}?h}n_w ‘Fn(vn)_Fn(U”
11 R .
< EE(’EZWn—UU{KLigvn}"F |EZ\Un—U|1{vn<Li§v}|)

=1 i=1
By Holder’s inequality, E(|=>" v, — v|[lper,<on}))” < Elvn — 0/ ljpcr <oy < (Elv, —
o[/ A=V ONVI=1 (B o1 <, 1) According to Theorem 4,we obtain Elv, — v|' = O(n="/?). Let

__t
0 =N 2(t+1) N

Elgcr <oy = Elfvcr, <vontljvn—viz0y + Eljvcr, <oy o —vi<oy

< Elgu,—v>01 + Elpu<rn, <ot0y

UTL

< Eﬂ +2f(v)0 = O(n—t/(2(t+1)))
— Ht .

Then one obtains E(|L1 37" | |v, — v[l{pcr;<ony])f = (O(n=F/CAYa)I=1a(O(n =t/ EFD)))1/a —
O(n=*/271/2%¢) "as ¢ — 1. Result about E(|1 3" v, — v|[1{u,<r;<0}|)¥ is exactly the same and
hence: E—g|vn, —v[*|Fy(vy) — Fo(v)|* = O(n~F/271/24),

Next, we consider the bound of pik |v, —v[¥|F, (v) — F(v)|*. Hélder’s inequality implies that E|v,, —
vlF|E,(v) — F(v)|* < \/EJv, —v[**E|F,(v) — F(v)[?. We already show that E|v, —v|** =O(n").
Let X; =1(1,<oy —F(v),i=1,--- ,n, then F,(v) — F(v) =+ 3" | X;. Since E|X;|" < 00, Vt € [1,00),
by lemma 6, we have E|F, (v) — F(v)[** = O(n~"). Hence one obtain Ex |v, —v|*|F,(v) — F(v)|* =

O(n=*). Combining with the previous results, we obtian E|B, |F = o(n=F/271/2+€),

Step 3. With the results in Step 1 and Step 2, we can finish the proof. For m =1, one sees

n

1
Ec, = E(v—— Z(v — L))"+ B,)
=v—-FE(v—L)"+EB, =c+o(n '/*%).

For m =2, denoting A4,, = nip S (E(v—L;)*—(v—L;)"), then E(c, —¢)*>=E(A,+B,)? =EA2+
EB? +2FA, B,. Under Assumptions A, B, C, we directly compute FA2 = ¥(Zyzlvar((v -

n2p2
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LT +230 (1 —i/n)cov((v — Ly)*, (v — Li+1)+)) =505 .n~ ' +0(n7?), where the last equality
holds due to that Y ;" ! Leov((v — L)%, (v — Liz1)™) = O(n™"') based on lemma 5. We also have
E(B,)? = o(n~%/%*<) base on results in step 2. Noticing that EA, B, < /EA2EBZ = o(n~'~1/4t¢),
then we have F(c, —c)* = ’Q”n‘l +o(n~1=1/4+¢) from which the conclusion follows. [

Proof of Theorem 1. By Theorem 4, we have var(v,) = nf’z(bvgg + o(n=%/%) and E(v,) =v +
o(n=3/*). According to the definition of relative error, one obtains

Un) = var(vn) _ nf(v2+0( 5/4)__0”’” n~ Y2 4 o(n3"*
REC) =\ Tz =\ wromomer — gy o0

2

Similarly, by Theorem 5, we obtain var(c,) = Z’;’; +o(n=%%*¢) and E(c,) = c+o(n=%/4*¢). Then,

we have

2
n,c —5/4+¢
RE(c,) = var(e,) _ | + o(n—5/4+¢) __Tnc

(Ecp)? (c+o(n=3/%))2 ~  ¢p + o(n=3/4e),

The proof for i.i.d samples is quite similar. [

EC.3. Proof of Theorem 2 and Theorem 3

Proof of Theorem 2. For part (i), according to Theorem 1, we have

. RE(v.(p)) .. Py . CPO v
lim ———~ = lim ———— = lim ———="— < 00.
n—oc RE(c,(p)) noocvf(v)on,. noocvf(0)0,

Due to lemma 5, we know that both |y;(k)| and |y2(k)| are bounded by some geometric series.
Hence o, , and o, . converge to 0., and o ., respectively, where agw ={p(1—p)+2> 7" n(k)},
0%, ={var{(v— L))"+ 2377, n(k)}-

Before the proof of part (i), we state a useful result coming from Taylor (1952) in which

L’Hospital’s rule is extended to a general case which includes both 4+o00 and —oc.

LEMMA 7. Let ¢ and A be extended real numbers (i.e. real numbers, +00, and —oc). Functions f
and g are assumed to have ﬁrst order derivative on an open interval I with an endpoint c. It is
also assumed that lim,_,. L2 = A. If either lim, . f(z) =lim, ,.g(z) =0 or lim,_,.|g(z)| = o0

then: lim,_,. ggg =A.

( )

Then we come to the proof of part (ii). Denote p:=lim, , ., h(z), where p € [—00,00]. We first
prove that —1/2 < p <0. With the help of lemma 7, we have

. Fv) . vF(v)
DI F ) T AR )

— fim M
A T s
1/2112F v)—1/2 " dx 1

lim = > ——.
vV——00 ffoo gjzf( ) 2
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Since h(x) <0 as x is negative, we have lim,_, ., h(v) € [-1/2,0]. Furthermore, due to the existence

of lim,_,_ wh/(x), with the above lemma for L’Hospital’s rule, we can obtain lim,_, . vh’ (v) =

h(v)
—log(—v) 0.

lim,_,

2.2 2
According to Theorem 1, we only need to compute the ratio %. Let K, denote EL1 <y}

and K, denote EL*11<,;. Denote ffoo F(z)dr and fjoo xF(x)dz as T, and T,. Then we have

K, =vp—T, and K, =v?p — 2T5. The limit of relative errors’ ratio is

 RE(.(p), o
fim | P = wre

n— oo RE(Cn (p))

p(1-p)K}

02 f(v)?[v*p(1 —p) — 20K, (1 —p) + K> — K7]
_ K2h(0)*(1—p)/p

K? — K, —v*p(1—p)+20(1-p)K,
) K3h()*(1-p)

—(1=p) (K1 —vp)* + (K7 — pK>)
_ Kih(v)*(1-p)

—(1=p)T? - 2p(vT) — T3) — T7]
_ KHhP(-p)

—pT? —2p(vTi — T2)'

(ec.4)

Next we apply lemma 7, the general L’Hospital’s rule, to find asymptotic representations for 73

and v1T; —T5. Note that

i 1 — b

v—1>I—noo Uph(v) U—1>gloo ph(?}) =+ Ufh(’l)) + 'Uh, (’U)p
oy 1 _ 1
T ) 1ol () p—1

Thus, as v — —oo, there is an asymptotic representation T; = ﬁvph(v) + o(vph(v)). Moreover,

for UTl — Tg,

lim vl ~ T3 = lim Tit+op—uvp
v——oc0 02ph(v)?  vo—o0 20ph(v)? + V2 fh(v)? + 2v2ph(v)h (v)
' ﬁvph(v) + o(vph(v))
- Ukr_noo 20ph(v) - h(v) + vph(v) + 2vph(v) - vh' (v)
ﬁ +o(1) 1

= A )t ir 2R @) - A 2 (=1

Therefore vTy — To = 5 -—5v°Ph(v)? + o(v*ph(v)?), as v — —oc.

With these two asymptotic results, it is possible to compute the limit of (ec.4) as follows

K2 -p)
v——00 —pT12 + 2])(7)T1 - TQ)
L ep=TPhEP(—p)
V——00 —pr + 2p(UT1 — Tg)
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. 2p?h(0)*(1+ £5h(0) + o{h(v))*(1 ~p)
o= Zp(oph(0) + o(oph{(0))) — 29 gy 2 Ph(0)? + o0 ph(0)2))
() o))
e (T o)~ 2 +o(l)
L1+2p 1
2 1-p 2

(1+2p)(p 1)

where the last inequality holds due to the condition p < 0. Thus there exists an vy, such that for
Eih(@)?*(1-p) 1

—pTE+2p(vT—T2) — 2

Re(wn(®) « L ]

Yo < vg, is satisfied. Furthermore, let py = F(vg), then for Vp < py, we obtain

Re(en(p)) — V27
Proof of Theorem 3. Notice the facts m,,(p) = v,(p/2) and m(p) =v(p/2). Proof of part (1) is

lim,,

similar to the proof of part (i) in Theorem 2. For part (ii),

lm[Re(mn(p)) 2 lim RE(vn(p/Q))]gz p?loy(p/2)]?
n—oo- Re(c,(p)) n—oor RE(cy(p)) v(p/2)?f(v(p/2))*c?
_ 2K?h(v(p/2))*(1—p/2)
—pT? = 2p(vTy — Ty)

Using asymptotic representation Ty = —Lyvph(v) + o(vph(v)) and vTy — Tz = 5= 0 Ph(v)* +
o(v*ph(v)?) from Theorem 2, one gets

(/2 (1= p)2)

vo—oo —pT7 4 2p(vT1 —T)
(op— T0)h(u(p/2)*(1 — p/2)

= A2 —pT? + 2p(vT — T5)
~ lim 2 oph(v(p/2))*(1+ £5h(0) +o(h(v)))*(1 = p/2)
v=—co —p(vph(v) + o(vph(v)))* — (mv ph(v)? + o(v2ph(v)?))

)2 =
(1+ 75h(v) + o(h(v)))*(1 - p/2)  ho(p/2))?

A o))~ Hrgder o) h(0)?
_1+2 (p/2)*v*f(v)?

L—p  p*v(p/2)*f(v(p/2))
_ 2 1 2P

l—p = 4.2(p/2)*(p/2)* ~

where the last inequality holds due to the facts about slowly varying function

lim, ,o.Z(p)/-%(p/2) = 1. Moreover, when p # 0, this is an strict inequality. [





