
Revenue Management Under a General
Discrete Choice Model of Consumer

Behavior

Kalyan Talluri
Department of Economics and Business
Universitat Pompeu Fabra, Barcelona

Garrett van Ryzin
Graduate School of Business
Columbia University, New York

gjv1@columbia.edu

Abstract

We analyze an airline yield management problem on a single flight leg in which the
buyers’ choice of fare classes is modeled explicitly. The choice model we use is very general
and includes a wide range of discrete choice models of practical interest. The optimization
problem is to find, at each point in time, the optimal subset of fare classes to offer. We
characterize the optimal policy for this problem exactly and show it has a surprisingly simple
form. The analysis also provides insights into when so-called ”nested allocation policies” (a
popular form of control in practice) are optimal. (This paper is an abreviated version of a
paper by the same title submitted to Management Science.)

1 Introduction and Overview

Yield (or revenue) management is a practice that dates back to the deregulation of the
U.S. airline industry in the late 1970’s. It was developed as an outgrowth of the need to
manage capacity sold at discounted fares, which were targeted to leisure travelers, while
simultaneously minimizing the dilution of revenue from business travelers willing and able
to pay full fares.

Concurrent with the evolution of industry practice, a considerable amount of management-
science literature on yield management has been published over the last twenty years. See
Littlewood’s [17], Belobaba [5], [6], [7], Brumelle and McGill [12], Curry [14], Lee and Hersh
[16], Robinson [20] and Wollmer [21] for work on managing capacity on a single flight leg. A
key result of this work is that the optimal policy can be implemented using a set of so-called



nested allocations. (See Brumelle and McGill [12].) Recent surveys of yield management
research are provided by McGill and van Ryzin [18] and Talluri and Barnhart [3].

Despite the success of this body of work, most of the above-mentioned models make
a common, simplifying assumption; namely, that consumer demand for each of the fare
products is completely independent of the controls being applied by the seller. However,
casual observation - and a brief reflection on one’s own buying behavior as a consumer -
suggests that this is not the case in reality. The likelihood of selling a full fare ticket may
very well depend on whether a discount fare is available at that time; the likelihood that a
customer buys at all may depend on the lowest available fare, etc. Clearly, such behavior
could have important revenue management consequences and should be considered when
making control decisions.

We lay no claim to uncovering this deficiency. Indeed, many researches have tried
to address “buy-up” (buying a higher fare when lower fares are closed) and “buy-down”
(substituting a lower fare for a high fare when discounts are open) effects in the context of
traditional models. See Phillips [19], Belobaba [5], Andersson [2] and Algers and Besser [1],
and Belobaba and Hopperstad [9]. However, to date there is no methodology that directly
and completely addresses this problem.

In summary, while many attempts have been made to understand the impact of choice
behavior on traditional yield management methods and to develop heuristics that partially
capture buy-up and buy-down behavior, to date there is no methodology that directly and
completely addresses the problem. In this paper, we develop a methodology that we believe
substantially fills this void. We analyze a single-leg yield management problem in which
we explicitly model consumer choice behavior using a general choice model, which specifies
the probability of purchasing each fare product as a function of the set of available fare
products. The model includes nearly every choice model of practical interest.

Given this general model of consumer choice behavior, we then formulate the single-leg,
multiple-fare-class yield management problem as one of selecting a subset of fare products
to offer at each point in time. We derive optimality conditions for the resulting dynamic
program. While the policy might appear to be potentially complex under this model, we
show that it has a simple form. First, we show that the optimal subsets can be reduced to an
ordered family, S1, ..., Sm, of nondominated subsets (the definition of a nondominated subset
is defined precisely below). Typically, this family of subsets is much smaller than the number
of total possible subsets. The optimal policy then consists of opening one of the sets Sk in
the sequence, where the optimal index k is increasing in the remaining capacity x. That
is, the more capacity we have available at any point in time, the further the optimal set is
along the sequence. Moreover, we show that the optimal policy is a nested allocation policy
(defined precisely below) if and only if the family of nondominated subsets is increasing -
that is S1 ⊆ S2 ⊆ ... ⊆ Sm. This provides a very complete and general characterization of
the cases in which nested allocation policies are optimal. We also provide conditions that
gaurantee the nesting is by fare class order. We use these conditions to show that for the
traditional, independent-demand model, the optimal policy is nested by fare class order.



The same conditions show that for the classical multinomial logic (MNL) choice model, the
optimal policy is nested by fare class order as well.

We also develop a practical estimation procedure for our model. One major difficulty
in estimating choice models in the yield management setting is that one typically cannot
observe no-purchase decisions. In many industries, sale are conducted remotely and anony-
mously and the only available data are purchase transactions. Thus, it is often impossible
to distinguish between periods with no arrival and periods in which there was an arrival
and the arriving customer decided not to purchase. (An exception is when sales are direct,
e.g. from the firm’s own web site, in which case considerable information on no-purchases
can potentially be gathered). We overcome this incomplete data problem by applying the
expectation-maximization (EM) method of Dempster et al. [15] to the traditional maximum-
likelihood discrete-choice parameter estimation. The method allows us to simultaneously
estimate both the parameters of the choice model and the arrival rates using only trans-
action data on sales. Together, our estimation procedure and optimization model provide
a theoretically sound and quite complete approach to the single-leg problem with choice
behavior. numerical examples.

Our analysis provides a quite complete characterization of optimal policies under a
general choice model of demand. The fact that the optimal policy consists of selecting a set
from a sequence of nondominated sets - and that the optimal set to select is further along
the sequence the more capacity one has available - is strikingly simple given the prima facia
complexity of the problem. Moreover, the analysis based on nondominated sets provides
insight into when nested and nested-by-fare-class policies are optimal, which is useful in
understanding both the traditional independent demand model, as well as new demand
models such as the MNL.
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