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The Science of Better and Better Together

Michael Trick
Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

Operations Research (OR) is the art and science of better decision making.
By using mathematical models, organizations and individuals create value through
these better decisions. Historically, OR has provided incremental improvement
through better scheduling, resource allocation, and distribution planning but these
improvements have been limited due to lack of data or limited computational power.
With the recent trends towards massive data sets and significant computational
power, combined with algorithmic advances in the field, OR is becoming much
more relevant to practice. In contrast to these trends, OR as a field appears to be
struggling. Professional society membership is decreasing, and there is a perception
that academic course offerings are also on the decline. ”OR groups” in industry
are a vanishing breed. How can we reconcile this dichotomy, and what can we do
about it? I’ll bring some thoughts from my experiences in the US and New Zealand,
along with consulting work I have done with Major League Baseball and the United
States Postal Service and others.

Michael Trick is Professor of Operations Research at the Tepper School of Busi-
ness, Carnegie Mellon University, where he has been on faculty since 1989. His
research interests are in computational integer programming and applications in
sports and social choice. In 2002, he was President of INFORMS he is currently
the Vice-President/North America for the International Federation of Operational
Research Societies. In 2007, he was Hood Fellow and Honorary Research Fellow at
the University of Auckland.
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Uniform-price auctions versus pay-as-bid auctions

Andy Philpott
Department of Engineering Science

University of Auckland
(joint with Eddie Anderson, UNSW)

Abstract

We consider the problem of optimizing a supply function bid into a discrimina-
tory auction in which each agent is paid their bid price on each increment of offered
capacity. The efficiency of pay-as-bid auctions in comparison with uniform-priced
auctions has been debated, as it is conjectured that in the former auction, agents
will simply bid their offer prices up to an anticipated clearing price. Using market
distribution functions, we derive optimality conditions for each agent in a pay-as-bid
auction, and compute Nash equilibria in supply functions. In most realistic cases,
there are no pure-strategy equilibria in this game. In the absence of capacities
and price-caps, there are infinitely many mixed-strategy equilibria, which become
uniquely determined when generators have limited capacities and are subject to a
price cap.
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Learning implicit collusive behaviour in electricity

markets.

Eddie Anderson
Australian School of Business

University of New South Wales

Abstract

When oligopolies involve repeated play (as in wholesale electricity markets) we
can expect collusive outcomes to emerge. We model the learning of such collusive
behaviours using a genetic algorithm in a stylised model of an electricity market. We
show that collusion occurs even though the system may not settle into a single stable
collusive equilibrium. We show that implicit collusion has the most importance in
markets in which there is an intermediate amount of market power. It is hard to
learn collusive patterns of behaviour in markets which are either highly competitive,
or in which one player has substantial market power.
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AN APPLICATION OF A MALMQUIST 

PRODUCTIVITY INDEX 

TO NEW ZEALAND ELECTRICITY 

LINE BUSINESSES

Paul Rouse and Annie Wing Huen Leung

Department of Accounting and Finance 

University of Auckland

New Zealand

p.rouse@auckland.ac.nz

Abstract

This paper describes the different treatments of the Malmquist productivity index such 

as the Quasi-Malmquist DEA, the generalised Malmquist productivity index and Desli and 

Ray (1997) Malmquist productivity index.  The base and adjacent period Malmquist 

productivity indexes are explained and an application of the base period Malmquist DEA 

on the New Zealand electricity line companies during 1999 to 2003 is carried out.  This 

analysis enables us to decompose the conventional Malmquist productivity index into 

technological and efficiency changes to test whether the technology has changed 

throughout the sampling period.  The results indicate a positive shift in technology between 

1999 and 2003 with improvements in technical efficiency during 1999 to 2000, 2001 and 

2002, but a decline in technical efficiency during 1999 to 2003.  The evidence also shows 

that capacity has a significant impact on efficiency but has an insignificant impact on the 

changes in efficiencies or technology of the line companies.

.

1 Introduction

In 1987, the electricity industry was restructured as part of the Labour Government’s 

plan for substantial changes of key New Zealand Government services.  Since then, various 

modifications have been implemented by successive New Zealand Governments, with a 

major preoccupation with managing the monopoly on line operations in the electricity 

industry.  In April 1999 in a major change aimed at reducing operating costs and improving 

efficiency, the industry was split into generation, transmission and retail components in 

order to reduced monopoly operation and encourage competition. 

Applying Data Envelopment Analysis (DEA) to data from 1999 to 2003 we estimate a 

Malmquist (1953) index which separates the effects of changes in productivity into 

technical efficiency and technological changes. We also describe different index 

decompositions focusing on the Quasi-Malmquist DEA, the generalised Malmquist 

productivity index and the Desli and Ray (1997) Malmquist productivity index.  

Specifically, the base and adjacent period Malmquist productivity indexes are examined in 

more detail with the former applied to New Zealand electricity line companies (ELBs).  
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2 Malmquist DEA

The Malmquist index was introduced by Malmquist in 1953 and further developed

using DEA by Färe et al. (1994).  The variable returns to scale output oriented Malmquist 

productivity index ( 1+t
oM ) can be written as:

2/1

1

11111
111

),(

),(

),(

),(
),,,( �

�

�
�
�

�
�=

+

+++++
+++

ttt

o

ttt

o

ttt

o

ttt

ottttt

o
yxD

yxD

yxD

yxD
yxyxM      

2/1

1111

11111
111

),(

),(

),(

),(

),(

),(
),,,(

	


	
�
�

	


	
�
�

�
�

�
�
�

�
���

�

�
�
�

�
=

++++

+++++
+++

ttt

o

ttt

o

ttt

o

ttt

o

ttt

o

ttt

ottttt

o
yxD

yxD

yxD

yxD

yxD

yxD
yxyxM

where period t is the benchmark technology period, x is the input vector and y is the output 

vector.  As shown, this can be decomposed into two components, where the first denotes 

the Debreu-Farrell technical efficiency change (TE�c (x
t
, yt, x

t+1
, y

t+1
)), and the second 

denotes the technological change (T�c (x
t
, yt, x

t+1
, y

t+1
)), i.e., the shift in production 

frontier.  

Although this index enables the decomposition of technical changes and technical 

efficiency changes, it ignores non-radial slacks and the effects of returns to scale.  This 

gives rise to the possibility of misallocating productivity changes to technological change 

or efficiency change.  

Grifell-Tatjé, Lovell and Pastor (1998) introduced the quasi-Malmquist productivity 

index that incorporates the non-radial form of inefficiency defined in Koopmans (1951) 

definition of efficiency.  They use a weighted additive output oriented DEA model instead 

of the conventional DEA model to calculate the non-radial efficiency scores for the quasi-

Malmquist index, and obtained the total output slacks from the DEA model, where 

( ) t

my1�� represents radial slack and t

mr represents non-radial slack: 

( ) t

m
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Using the total output slacks ( t

mS ) obtained, the non-radial technical efficiency is defined 

as:
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The quasi-distance functions (Q
t
0(x

t
, y

t
)) used to calculate the quasi-Malmquist 

productivity index is the inverse of the above non-radial technical efficiency measure.  In 

the case where there are no output slacks, Q
t
0(x

t
, y

t
) will equal D

t
0(x

t
, y

t
) in the conventional 

Malmquist index and the quasi-Malmquist productivity index will be equivalent to the 

conventional Malmquist productivity index.

Grifell-Tatjé and Lovell (1999) provide a generalised Malmquist productivity index

which decomposes into the conventional Malmquist productivity index and a Malmquist 

scale index as follows:
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t
(x

t
, y

t
, x

t+1
, y

t+1 
) is the conventional Malmquist productivity index and E0 (x

t
, y

t
,

x
t+1

 ) is the period t Malmquist scale index defined as the ratio of a pair of output oriented 

scale efficiency measures relative to the period t technology.

If E0 ( x
t
, y

t
, x

t+1
 ) > 1, it means that ( x

t+1
, y

t
 ) is more scale efficient than ( x

t
, y

t
 ), i.e.,

scale economies contributed positively to the productivity change over the two periods, t 

and t+1, and vice versa if E0 ( x
t
, y

t
, x

t+1
 ) < 1.  When E0 ( x

t
, y

t
, x

t+1
 ) = 1, it means that the 

degree of scale efficiency is the same between the benchmark period (t) and the period t+1.

In contrast, Desli and Ray (1997) introduce the variable returns to scale frontier as a 

benchmark and measure technical change using ratios of variable returns to scale distance 

functions:
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where 1

0

+t
cD  represents constant returns to scale and 1

0

+tD  represents variable returns to scale 

distance functions.  The first term in the above equation represents the technical change 

measured by a ratio of variable returns to scale distance functions; the second term 

represents the technical efficiency change measured also by a ratio of variable returns to 

scale distance functions; the final term, the only term that is different from the Grifell-Tatjé 

et al. (1998) method of decomposition, represents the scale efficiency change relative to 

period-t technology using different data (i.e., (x
t
, y

t
) and (x

t+1
, y

t+1
)) from Grifell-Tatjé et 

al.’s scale efficiency change term, which uses data (x
t
, y

t
) and (x

t+1
, y

t
). 

2.1 Base and Adjacent period Malmquist productivity indexes

The change in productivity over time can be analysed in two ways (Althin, 2001; 

Asmild et al., 2004):  a base-period comparison, which compares data for different years 

with a base year (usually the first year in the sampling period), and an adjacent-period 

analysis, which compares data for different years with the prior year’s data.  

The main difference between the two methods is that the base period measure of 

technical change depends on the fixed base period’s technology. This can be problematic 

when there are significant changes in the technology of the dataset during the sampling 

period, or when a long sampling period is employed.  For example, when technical changes 

are measured for the year 2000 to 2005, the technical changes when employing the year 

2000 as base year and the efficiency scores when employing the year 2005 as base year can 

be significantly different, especially when there are dramatic technology changes during the 

5-year period.  This creates a dependency on the base period’s technology as a reference for 

measuring the technical changes, which might not be relevant to the periods that are under 

examination.  On the other hand, this method fulfils transitivity, where the product of the 

index number of period-0 relative to period-1, and the index number of period-1 relative to 

period-2, equals the index number of period-0 relative to period-2 (Althin, 2001). Althin 
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(2001) finds that the change in efficiency from one period to another period differs 

significantly if the base period changes.  This suggests that the measure of changes in 

productivity is dependent on the base-period technology and may not “truly” measure 

changes in productivity across the years.  However, Fisher (1922) suggests that the circular 

test is not strictly necessary in order to obtain an accurate analysis.

The adjacent period method measures the shift in frontier at time t and t+1 for 

technology changes which are then averaged geometrically.  This method does not fulfil the 

circular tests but it does not depend on a base period technology benchmark when 

measuring changes in technology.

Since the effects of the two methods are uncertain, both are considered in the study of 

the electricity line industry below.  As the two methods provide similar results, only the 

base period Malmquist productivity index results will be reported below to study the 

changes in efficiency after the 1999 electricity reform.

3 Literature Review

The Malmquist productivity index has been used in a number of empirical studies to 

measure performance of industries such as the health sector (Giuffrida, 1999;

Sommersguter-Reichmann, 2000), electricity industry (Edvardsen and Forsund, 2003;

Klein and Yaisawarng, 1994), productivity in OECD countries (Fare, Grosskopf, Norris 

and Zhang, 1994), telecommunications (Uri, 2001), multi modal bus transit (Viton, 1998)

and the banking industry (Asmild, Paradi, Affarwall and Schaffnit, 2004; Grifell-Tatje, 

Lovell and Pastor, 1998).

There are several studies on the effects of the introduction of new regulations and 

controls on productivity change in the electricity industry worldwide, using conventional 

DEA and the Malmquist productivity index.  Klein and Yaisawarng (1994) studied the 

effects of sulphur dioxide controls on the productivity change in the U.S. electric power 

industry using the Malmquist input-based productivity index.  They decomposed the index 

into change in technical efficiency, changes in technology and changes in scale efficiency 

and found that productivity had decreased from 1985 for three of the four target years.  

Scully (1998) studied the effects on efficiency gains of the transformation of New 

Zealand electrical supply industry, from state-owned to commercially-oriented power 

companies.  A translog cost function was used to measure the efficiency gains which 

indicate that the reforms had substantial cost reducing effects.  

Lawrence’s (2003) analyses employed total factor productivity (TFP) analysis to look 

at changes in the industry productivity growth from 1996 to 2003.  He used three outputs, 

namely throughput, system line capacity and connection numbers, and five inputs, i.e., 

operating costs, overhead line capacity, underground line capacity, transformer capacity 

and other capital.  He found an average of 2.1% annual increase in the TFP growth trend 

during 1993 to 2003, and an increase of 5.6% during the year 1999 to 2000.  Lawrence 

suggests that this change in the TFP index is due to the change in electricity regulations in 

the year 1999, leading to an improvement in the efficiency of the industry.  However, given 

that the TFP index does not take into account the change in technology during the sampling 

periods, it cannot be certain whether the increase is due to efficiency or technology 

changes, or a combination of the two.

4 New Zealand Electricity Industry Data

7



The sample analysed in this study includes 29 New Zealand electricity line companies 

over the years 1999 to 2002 and 28 New Zealand ELBs in 2003. 15 of the ELBs operate in 

the North Island and 13 in the South Island.  One company in the North Island was

removed in 2003 because of the purchase of United Networks by Vector.  The data was 

collected from the Commerce Commission (2003) and verified using the independent 

database established in Lawrence (2003) and data published in the 

PriceWaterHouseCoopers (2003) Electricity Line Business Information Disclosure 

Compendium for the years 2001 to 2003.  In order to adjust for the effects of inflation, all 

monetary data, e.g. direct and indirect costs are adjusted to 2003-dollar value using the 

Customer Production Index (CPI)’s electricity group index.

The DEA model comprises three outputs: total electricity distributed, number of 

connections and a quality factor (SAIDI); and three inputs: direct and indirect costs, loss 

ratio and the optimised deprival value as a measure of the capital investment in the line 

businesses.

5 Results

The first DEA analysis pools the data over the five years with results reported in Table 

1 showing an increasing trend with the exception of 2002.

1999 2000 2001 2002 2003 Average

Average 82.4% 85.8% 87.6% 85.6% 88.4% 86.0%

Median 84.1% 86.0% 87.8% 84.2% 88.2% 86.1%

Table 1 – Pooled DEA efficiency scores 

Table 2 reports the results of a Malmquist productivity index with 1999 as the base 

year with decompositions into changes in technical efficiency and technology.  21 (8) ELBs 

have efficiency changes greater (less) than 100% for the years 2000, 18 (11)ELBs for 2001, 

19 (10) ELBs for 2002 and 10 (18) ELBs for the years 2001 and 2003.  Aurora Energy 

shows a decline in technical efficiency over the entire period, with an average of 91.9%.  

Nelson Electricity and Network Tasman display improvements in efficiency with an 

average of 132.55% and 123.7% respectively.

There are 22 ELBs who have progressive technology changes (where T� >1) 1999 to 

2000, 25 ELBs for 1999 to 2001, 22 ELBs for 1999 to 2002 and 25 ELBs for 1999 to 2003.  

ELBs such as Network Tasman, Orion New Zealand and Vector show considerable 

improvement in technology over the sampling period, with an average of 107.1%, 119.4% 

and 116.5% respectively.  Other ELBs such as Nelson Electricity have considerable 

regressive technological changes (average of 86.3%).  The variation for technology changes

is significantly lower among the ELBs than for technical efficiency changes. Vector and 

8



Table 2 Malmquist productivity Index Changes in Technical Efficiency Technology Change

99-00 99-01 99-02 99-03 99-00 99-01 99-02 99-03 99-00 99-01 99-02 99-03

1 Alpine Energy 104.82% 108.48% 134.78% 126.12% 104.9% 103.6% 132.6% 114.4% 99.95% 104.76% 101.64% 110.20%

2 Aurora Energy (Dunedin Electricity) 96.14% 98.48% 98.85% 100.90% 95.1% 93.1% 88.2% 91.2% 101.14% 105.81% 112.03% 110.64%

3 Buller Electricity 89.18% 98.53% 109.14% 124.16% 94.1% 98.4% 112.4% 124.9% 94.82% 100.18% 97.06% 99.39%

4 Centralines 120.52% 112.34% 109.47% 112.12% 118.0% 107.8% 110.1% 99.3% 102.13% 104.19% 99.44% 112.88%

5 Counties Power 104.54% 99.94% 129.46% 96.68% 100.5% 93.4% 121.3% 78.5% 104.04% 106.98% 106.76% 123.09%

6 Eastland Network 98.92% 124.13% 110.40% 116.42% 101.5% 125.2% 109.3% 95.1% 97.47% 99.12% 100.98% 122.38%

7 Electra 102.90% 92.96% 102.17% 97.84% 98.8% 93.1% 102.0% 89.0% 104.19% 99.82% 100.14% 109.96%

8 Electricity Ashburton 118.91% 110.45% 117.81% 118.92% 118.1% 105.3% 109.7% 103.7% 100.68% 104.85% 107.41% 114.66%

9 Electricity Invercargill 134.15% 129.90% 95.23% 127.62% 132.0% 132.0% 100.7% 132.0% 101.64% 98.42% 94.53% 96.69%

10 Horizon Energy Distribution 106.68% 118.82% 107.46% 125.10% 102.1% 104.8% 94.9% 106.5% 104.48% 113.33% 113.19% 117.48%

11 MainPower New Zealand 105.56% 111.64% 115.49% 112.91% 97.4% 100.2% 107.1% 84.7% 108.33% 111.36% 107.86% 133.35%

12 Marlborough Lines 109.28% 101.04% 96.79% 99.70% 105.3% 95.4% 93.4% 76.5% 103.81% 105.96% 103.62% 130.39%

13 Nelson Electricity 111.97% 144.59% 93.21% 105.40% 135.6% 167.9% 100.0% 126.7% 82.56% 86.12% 93.21% 83.19%

14 Network Tasman 110.68% 135.05% 142.09% 142.78% 107.5% 130.3% 129.9% 127.1% 102.94% 103.64% 109.37% 112.32%

15 Network Waitaki 117.55% 121.32% 99.39% 90.99% 112.2% 108.4% 108.2% 74.8% 104.77% 111.96% 91.87% 121.71%

16 Northpower 103.40% 111.82% 109.55% 119.23% 95.4% 100.4% 101.8% 106.8% 108.34% 111.39% 107.65% 111.65%

17 Orion New Zealand 103.31% 100.56% 113.36% 99.02% 82.5% 74.6% 100.0% 95.0% 125.22% 134.72% 113.36% 104.23%

18 Otago Power 113.30% 117.34% 117.10% 120.56% 110.7% 113.4% 108.7% 95.8% 102.35% 103.46% 107.74% 125.82%

19 Powerco 100.97% 102.21% 94.99% 105.63% 100.2% 96.6% 89.3% 90.6% 100.77% 105.80% 106.39% 116.64%

20 Scanpower 110.68% 119.99% 100.93% 104.70% 114.7% 111.2% 116.4% 101.4% 96.48% 107.87% 86.72% 103.30%

21 The Lines Company 107.02% 114.15% 108.72% 90.92% 103.6% 107.2% 106.1% 74.3% 103.28% 106.50% 102.49% 122.44%

22 The Power Company 118.85% 119.92% 103.30% 110.38% 119.4% 116.8% 94.9% 99.8% 99.52% 102.68% 108.84% 110.61%

23 Top Energy 100.21% 106.44% 93.72% 78.06% 96.4% 97.2% 94.5% 68.6% 103.99% 109.46% 99.16% 113.87%

24 Unison Networks 105.87% 97.57% 102.53% 107.77% 101.2% 94.4% 99.2% 99.7% 104.63% 103.40% 103.33% 108.14%

25 UnitedNetworks 107.09% 112.22% 114.52% 100.0% 100.0% 100.0% 107.09% 112.22% 114.52%

26 Vector 115.90% 119.25% 121.25% 109.40% 100.0% 100.0% 100.0% 100.0% 115.90% 119.25% 121.25% 109.4%

27 Waipa Networks 105.06% 103.44% 106.84% 97.19% 100.4% 97.7% 106.2% 87.4% 104.68% 105.86% 100.60% 111.2%

28 WEL Networks 103.21% 99.08% 100.55% 100.89% 100.2% 96.7% 98.5% 93.8% 103.02% 102.43% 102.10% 107.57%

29 Westpower 95.70% 105.19% 106.59% 90.28% 98.5% 100.9% 105.3% 72.3% 97.12% 104.26% 101.19% 124.84%

Average 107.7% 111.6% 108.8% 108.3% 105.0% 105.7% 104.9% 96.8% 102.9% 106.4% 103.9% 113.1%

Median 105.9% 111.6% 107.5% 106.7% 101.2% 100.4% 102.0% 95.5% 103.0% 105.8% 103.3% 112.0%

Maximum 134.2% 144.6% 142.1% 142.8% 135.6% 167.9% 132.6% 132.0% 125.2% 134.7% 121.2% 133.3%

Minimum 89.2% 93.0% 93.2% 78.1% 82.5% 74.6% 88.2% 68.6% 82.6% 86.1% 86.7% 83.2%

Standard Deviation 9.0% 12.2% 12.0% 14.2% 11.3% 16.8% 10.6% 17.2% 7.0% 8.1% 7.5% 10.6%

Table 2: Malmquist Index Decomposed into Technical Efficiency and Technology Changes
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United Networks have no changes in efficiency over the five-year period because in 

the calculation of the Malmquist index, these ELBs had infeasible super-efficiency 

scores for all five years and a proxy has been used to calculate the Malmquist Index.

Some interesting insights can be gained from the Malmquist productivity index. 

For Electricity Ashburton (Table 3) the pooled DEA analysis for 1999 to 2002 shows an

average efficiency of 70.4%.  However, in 2003, there is a significant increase in 

efficiency to 80.2 %.  The pooled DEA results would attribute all the increase in its 

efficiency scores to that year.  However, the Malmquist productivity index shows the 

significant increase is not caused by technical efficiency improvements, (which declines 

in 2003 although it is larger than 100%), but is due to significant technological 

improvement for 2003. (Recall that 1999 is the base year).

1999-

2000

1999-

2001

1999-

2002

1999-

2003

Tech Efficiency Changes
118.1% 105.3% 109.7% 103.7%

Malmquist 

Index
Technology Changes

100.7% 104.9% 107.4% 114.7%

1999 2000 2001 2002 2003

Pooled DEA
Efficiency Score

Mean (70.4%)

69.1% 75.3% 68.2% 69.0% 80.2%

Table 3 –Summary of Efficiency of the ELB, Electricity Ashburton

Overall, the results indicate a positive shift in technology between 1999 and 2003 

with improvements in technical efficiency during 1999 to 2000, 2001 and 2002, but 

with a decline when comparing 1999 to 2003.  In order to see whether these changes in 

technology and technical efficiency are caused by factors not analysed in the above 

models, further sensitivity analysis is carried out to investigate the variations in 

efficiency in the pooled analysis and the changes in technology and technical efficiency 

in the Malmquist approach.  Factors investigated include capacity, percentage of lines 

underground and location differences.

5.2 Regression results

To evaluate possible relationships between efficiency and potential environmental 

factors, Table 4 reports the results of regressions of the pooled DEA and Malmquist 

DEA efficiency scores using the following explanatory variables:

TRANS_CAP = Total installed distribution transformer capacity, in kilovolt amperes

(TRANS_CAP)
2
 = TRANS_CAP squared, in kilovolt amperes

TOT_SYS_LENG = Length of overhead line and underground cable measured in 

kilometres

UNDER = Percentage of lines underground (= total underground lines (km) divided by 

total system length (km))

For the pooled efficiency scores, YR_00, YR_01, YR_02, YR_03 = Dummy variable for 

2000, 2001, 2002 and 2003

For the Malmquist measures, YR_9901, YR_9902, YR_9903 = Dummy variable for 1999 

compared with 2001, 1999 with 2002 and 1999 with 2003 

NORTH = 1 if line business is located in North island.

The pooled DEA efficiency scores regression models show transformer capacity, 

total system length, the percentage of lines underground and North Island location as 

significantly related to the efficiency scores in the pooled DEA model.  In particular, as 
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the percentage of underground lines increase, there is an increase in the efficiency 

scores.  North Island ELBs are on average 23.2% more efficient than South Island ELBs 

possibly because there are more high density urban areas in the North Island. .

Transformer capacity appears to have a detrimental effect on efficiency scores and the 

positive quadratic terms suggests a U-shaped relationship implying diseconomies 

associated with mid-sized ELBs.

Pooled
DEA

Results

Malmquist
Technical
Efficiency

Malmquist
Technogical
Change

TRANS_CAP
-0.445*

TRANS_CAP
-0.397 -0.139

TRANS_CAP2
0.672***

TRANS_CAP2
0.441 0.067

TOT_SYS_LEN
-0.229**

TOT_SYS_LEN
-0.067 0.034

UNDER
0.385***

UNDER
-0.059 -0.004

YR_00
0.093

YR_9901
0.030 0.169

YR_01
0.144

YR_9902
0.010 0.057

YR_02
0.084

YR_9903
-0.222* 0.502***

YR_03
0.128

NORTH
0.232***

NORTH
-0.233** 0.072

Adjusted R-
Square

0.242 0.056 0.135

Significance
<1% *** <5% ** <10% *

Table 4: Regression Results of Efficiency Scores and Explanatory Variables

For the Malmquist changes in technical efficiency, technical efficiency 

improvement is significantly lower between the year 1999 to 2003 than 1999 to 2000, 

2001 and 2002.  In addition North Island ELBs have lower improvement in technical 

efficiency than ELBs in the South Island (23.6%). In contrast, the only significant 

variable for technology change is between 1999 and 2003. 

6 Conclusion 

In contrast to the pooled DEA model, the Malmquist index shows both efficiency 

and technology changes over time. Overall, North Island ELBs perform better than the 

South Island ELBs confirming results reported by Banicevich (1998).  However 

efficiency improved at a higher rate in the South Island than the North Island.  Although 

the percentage of lines underground and capacity significantly affect the pooled DEA 

scores, no significant relationships were found with efficiency and technology changes 

over time.  Total system length does not appear to have any significant impact on the 

efficiency of ELBs.

Omitted variables are always an issue, but the model has used combined inputs and 

outputs employed in most other DEA studies and the DEA analysis on the New Zealand 

Electricity Industry by Banicevich (1998).  Nonetheless, managerial aspects of 

companies are also important factors which might influence the efficiency of the 

companies.
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PuLP a Linear Programming Tool Kit for Python

Stu Mitchell
Department of Engineering Science

University of Auckland

Abstract

Mathematical Programming Languages such as AMPL and GAMS are widely
used within operations research. These languages encourage students and practi-
tioners to clearly state their models in an algebraic form. The model is then clearly
readable and separated from instance data.

PuLP is a algebraic mathematical programming toolkit for the Python program-
ming Language. PuLP was originally developed by Jean-Sebastien Roy (js@jeannot.org)
and extended by Stuart Mitchell (s.mitchell@auckland.ac.nz). Users of PuLP can
state their models clearly through the use of an algebra of mathematical program-
ming specific objects including problems, variables and constraints. Currently,
three different solvers (CPLEx, LpSolve and Coin-or) are supported. As Python is
a full programming language users are not restricted to the limited functionality of
AMPL and GAMS.

There are a number of algebraic mathematical programming toolkits for other
languages including Concert (CPLEX) and FLOPC++ (COIN-OR). PuLP uses
Python language constructs (list comprehensions and modules) to make the con-
struction of mathematical programs much easier.
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Daisy: A Detailed Simulation of Milk Collection

Geoff Leyland

Incremental Limited

Auckland

Abstract

The dairy industry is fundamental to the New Zealand economy. Collecting the

milk from farms and transporting it to processing sites occupies one of the coun-

try’s largest transport fleets. Daisy is a detailed simulation of milk collection and

transportation that can be used to study existing collection operations and what-if

scenarios over extended periods of time. Daisy is composed of a discrete-event simu-

lation engine, a shortest- path algorithm, a heuristic route planner, domain-specific

logic and a scripting language. Combined with detailed data on milk supply, the

transport fleet, production requirements and a road map, Daisy becomes a powerful

tool for studying collection operations and a decision support tool for making im-

provement decisions. This talk will give an overview of Daisy’s design, cover some

interesting aspects of its construction and a discussion of other scenarios where it

could be used.
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New Tools for Military Operations

Analysis: Agent-Based Models Combined

with Genetic Algorithms

Gregory C. McIntosh

Defence Technology Agency

Devonport Naval Base

Auckland

New Zealand

g.mcintosh@dta.mil.nz

Abstract

MANA (Map Aware Non-uniform Automata) is an agent-based model developed by the

Operations Analysis group at Defence Technology Agency. It has been used for a

number of studies including: modelling civil violence management, maritime

surveillance, coastal patrols, and developing future land operating concepts for the NZ

Army. MANA purposefully leaves out detailed physical attributes of the entities being

modelled if this is not expected to have any bearing on the study at hand. Hence, the

model runs relatively fast, allowing fitness landscapes to be built up over parameter sets

within a reasonable time frame. Agents are ascribed a set of personality weightings to

guide their behaviour on a battlefield map. These settings can change state, depending

on the presence of other agents and terrain features on the map. Hence, a rich variety of

behaviour can emerge from a seemingly straightforward scenario, allowing novel

military solutions to be uncovered. The agent personality weightings lend themselves to

being incorporated into a genetic algorithm (GA) scheme for evolving superior military

tactics. We present such a GA scheme and an example of its use.

1 Introduction

Genetic algorithms have recently found acceptance as a viable tool for solving a variety

of problems such as designing electronic circuits, automated software development and

designing efficient communications networks. More generally, genetic algorithms can

be used to solve problems requiring some type of optimization where a large number of

parameters are involved and the mathematical structure of the fitness function is not

well behaved or is unknown beforehand.

The genetic algorithm derives its inspiration from the way species are thought to

evolve in nature. A species’ physical and behavioural characteristics are encoded by

their genes. The ‘solution’ for a particular species corresponds to those individuals who

are fittest to survive in their environment. Our GA scheme is illustrated in Figure 1. In

order to evolve a squad of agents to achieve dominance in a scenario, a population of

equivalent squads is defined starting from a random gene pool. Each squad from the

population is pitted against the scenario’s enemy in turn to establish fitness values.

Fittest squads are retained in the gene pool while less fit squads are allowed to fall by
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Figure 1. The genetic algorithm scheme, where g1,…,g4 and h1,…,h4 are genes

corresponding to agent personality weightings in the MANA model.

the wayside. Analogous to evolutionary biology, recombination of chromosomes is

carried out to determine the next generation of squads. Repeating the process yields a

superior squad which optimally solves the scenario at hand. This typically occurs after

just a few generations. The genes in our scheme are integer valued; in contrast to the

binary genes found in evolutionary biology. Our scheme focuses on evolving clever

tactics and behaviour with the military hardware already specified. Hence, the emphasis

is on optimization of operating procedures, as opposed to, say, equipment procurement.

2 Example

Figure 2. (a) Two-sided battle. Both sides are equivalent except the Friendly force has

been split into 4 squads. (b) Tactics evolved by the Friendly force: flanking manoeuvre.
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The example shown in Fig. 2 illustrates one particular scenario evolved using our GA

scheme. Two armies of agents are pitted against each other. Both sides are equivalent

except that the Friendly force has been split into 4 equal squads. Without some type of

coordination amongst the four squads, the Friendly force is at a disadvantage since each

squad by itself is outnumbered by the enemy force. The GA scheme has been applied to

find tactics which can give an advantage to the Friendly force. Tactics evolved are

shown in Fig. 2(b), and correspond to a standard flanking manoeuvre. Two squads adopt

a more passive stance and maintain a stand-off distance from the enemy. This keeps the

enemy occupied and fixed in place. Meanwhile, the other two squads adopt a more

aggressive stance. They sweep around and, in a pincer-type movement, achieve local

numerical superiority at the enemy’s flank. This allows the Friendly force to gradually

‘wear down’ the enemy and gain the upper hand. Communication links between the four

squads (which are modelled in MANA) were essential for this stategy to work.

3 Summary

The genetic algorithm performs extremely well and usually arrives at some sensible

solution for outperforming a scenario’s enemy. The GA tool often brings up unexpected

solutions which may not have been intuitively obvious at the outset. Our GA tool

usually converges to a solution within approximately 10 – 20 generations. For smaller

scenarios, such as the one illustrated in this article, a population size of N ~ 10 has been

found to be more than adequate. For larger scenarios with multiple squads involved and

many personality weightings selected to build larger chromosomes, we have found N ~

20 to be quite adequate for bringing up viable solutions. On the other hand, for N > 100

we begin to experience problems with the GA scheme not converging. In future, this

type of software tool could be used for rapid course-of-action development in a front-

line operations analysis environment.
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Experiences from an OR Consultancy 
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Abstract  

Operations Research (OR) methods are not widely understood or well known in thebusiness 

community. So what constitutes a problem that an OR Based model mightsolve isn’t always 

clear. 

This paper works through some of the problems that might require an OR professional, the 

types of approaches that could be used and what the potential payoff’smay be. As OR 

practitioners, Orbit are equipped to produce excellent solutions to some of these problems.  

Key words: optimisation, heuristic, knapsack  

1 Introduction  

Problem solving with mathematical models is extremely effective, as many ORproblems are 

numerical. Some simple questions will signal if an OR-based solution isrequired:  

 How difficult is this problem? Is getting any feasible solution going to bedifficult?  

 If the problem is solved without a model of some kind (e.g. by hand), how farwill the 

solution be from the best possible solution?  

 If the answer to the previous question is ‘I’m not sure’, what method would be 

 

used to gain a better answer?When problems are difficult to solve, any feasible 

solution can seem acceptable. But diga little deeper and it often becomes clear problem 

solvers have no way of knowing how close to the best possible answer they’re coming. And 

very often the person chargedwith solving problems is ill-equipped to improve on the quality 

of the solutions.Because:  

 The problem really is a difficult one to solve.  

 There’s no time to work on a better technique because the current solutionprocess 

takes all available time.  

 The tools and techniques for creating a better solution are not available, or notwell 

understood by the problem solver.  

 

2 What Makes it an OR Problem?  

There are two basic reasons to undertake an OR modelling exercise: 

 1. A very big decision must be made. Whatever it is, it’s going to cost a lot 

ofmoney and spending a certain amount of time figuring out if the best possible  

 decision is being made is likely to be worth the effort. Even confirmation the correct 

course is being taken might be worth the development of a model.  

2 The same type of decision is made repeatedly. In this case, people potentiallyspend a 

lot of time coming up with the answer, and even a small improvement in each result will make 

model development worthwhile.  
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2.1 The Big Decision  

To know whether an OR model is needed, start by deciding the ‘size of the prize’. Ask,‘if we 

made the best possible decision, how much would that gain?’ and conversely, ‘ifa poor 

decision were made, how much would that cost?’ 

The best solution may be apparent, even if we’re not sure how it’s achieved -or ifit’s 

possible -everyone knows the answer to the Rubik’s Cube, even if they can’t do it.So knowing 

where you are and how far from a solution you might be is usefulinformation.  

If the solution is not known, it’s a question of asking whether an answer that was 1%better 

than the current one justifies further study. 

Finally, if the decision is big enough, with enough options, a good model is ofbenefit.  

2.2 Repeated Decisions  

Average behaviour is the key with repeated decisions; achieving the optimal outcomefor each 

decision is not necessary if we routinely make at least ‘good’ decisions. An example of this is 

eating. No one gets healthy by eating the right food for one day.Moreover people won’t get 

unhealthy by eating junk food for one day, or several days ina row; as long as they make good 

choices most of the time. 

Having a model can save planning time. If it takes a planner until 4:30pm to calculate the 

daily plan, a company may have been operating poorly most of the dayeven though they had 

information to enable them to do better at 9am. And what happens to the quality of those 

solutions when the planner, who knows what they’re doing, is away? 

Many decisions require large quantities of information to be retrieved, possibly 

fromdifferent systems; an answer therefore must have multiple objectives balanced 

againsteach other.  

3 What Type of Model  

So what type of models might be possible? 

1 Direct optimisation. Though somewhat rare, problems do exist that can besolved 

directly via mathematical programming.  

2 An optimisation hybrid. This type of model uses a math model with some typeof 

‘wrapper’ to gain meaningful results.  

3 A heuristic. The size and complexity of a problem may dictate using this method. It 

can be used in parallel with one of the other methods if there isuncertainty as to whether a 

solution is possible or not.  

 

4 Optimisation Case Study – NZ Post  

NZ Post approached Orbit with the goal of developing a model of their mail 

collection,sorting, transport, and delivery systems; NZ Post believed a mixed-integer 

programmingmodel would be ideal. The size of potential savings, estimated in the millions, 

warranted  

4.2 Problem Size  

Unsure whether the problem could be optimised, Orbit created a detailed formulation.This 

formulation determined the data required from NZ Post, as well as giving ananticipated model 

size. Our initial formulation indicated approximately 200,000 constraints. Since we’d solved 

problems much larger than this using GAMS andCPLEX on a 32 bit Windows PC, it was 

worth developing the model.  

4.3 Exploding problem size  

Without building an actual model it’s difficult to test specifications and formulationsand 

errors or omissions can be made. For large MIP’s, a seemingly small omission cancreate 

significant changes in the size of the model. 

NZ Post standards for mail required Orbit to track the day of pickup for each type ofmail. 

20



Our initial formulation assumed recipients of mail don’t need to know the source of that mail. 

The formulation overlooked the issue of across-town mail deliveries. NZ Post’s standard for 

mail delivery for certain types of mail is two days. However, acrosstown should only take one 

day. Therefore knowing the destination is not enough, withlocal mail, the origin is also 

significant. 

This type of omission is common in problem specifications. Given a list of items,most 

people can easily pick ‘the odd man out’. But picking a missed item is extremelydifficult. 

Orbit’s formulation was correct as far as it went, but an important issue hadbeen excluded. 

Such omissions may remain undetected for an entire development process. 

To implement this ‘new’ restriction, tracking both pickup date and source of mailwas 

necessary and each type of mail needed to be tagged as being across-town or not. 

Many constraints have an exponential increase in size due to the effects of theseadditions. 

The initial estimation of 200,000 constraints rose to 850,000 for the fullmodel.  

In combination with the variables and non-zero elements created, this problem wasabout 

50% bigger than the maximum sized problem that could be attempted on a 32 bitWindows PC 

using CPLEX. Even if it fitted, the difficulty in solving an MIP meant themodel was probably 

twice as large as the biggest model that could be successfullysolved.  

A seemingly small omission converted a tractable problem into an impossible one.  

4.4 Problem Compression  

While it may have been possible to reduce the timeframe of the model, the number ofnodes, 

or the number of mail types, Orbit felt this would make the model much lessuseful in terms of 

giving meaningful results. We therefore tackled the size of the modelon a number of fronts:  

� Limiting model options for clearly unlikely solutions.  

� Analysing the data to see whether knowledge about the inputs could help us.  

 

• Being very careful not to create redundant constraints or variables.Major savings were 

possible by limiting the sorting options available for each node.The across-town requirement 

actually helped here, as many sorting options would notmake across-town delivery by the next 

day possible. If each node was limited to having2 or 3 possible sorting node options, what was 

a 20 * 20 problem size became a 20 * 3problem size. If the options are picked carefully, the 

optimal solution will not be excluded.  

Analysing the data provided further savings. If a particular type of mail had not been 

picked up at a node at any time, then no constraints or variables needed to be generatedfor that 

type of mail for the pick-up period. These types of savings would normally bemade by the LP 

pre-processor, but the problem needed to be reduced to some feasiblesize before the pre-

processor could act. The final problem size after compression wasapproximately 1/3 its 

original size.  

4.5 Summary  

Directly optimising a problem is an attractive option, especially if savings are likely tojustify 

finding the best possible solution, even if the effort required is quite large. 

However, small omissions, or perhaps a desired increase in functionality, can have 

adramatic effect on the problem size. If sacrifices in detail are made to solve the problem,the 

usefulness of the results may be compromised. 

Orbit solved NZ Posts problem, but it took considerable effort to make the problemsmall 

enough. Solve times were about 2 hours per scenario. Using a heuristic it mightpossibly have 

taken a few minutes and the answers may have been close to optimal;however, we wouldn’t 

have known how close to optimal and the potential savings peryear justified significant 

modelling effort. If further functionality had been required inthe model, it may have become 

unsolvable.  

4.6 In Practice  
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As a result of the modelling exercise (of which out model was a part), with a relativelysmall 

investment NZ Post saved millions of dollars per year and:  

� Announced the consolidation of a number of sorting centres.  

� Purchased a number of automated sorting machines.  

� Introduced postal codes (local knowledge of postal areas reduces when sortingcentres 

become centralised).  

 

5 Hybrid Case Study – CASm  

CASm was created for consultants at CRA International to perform market poweranalyses in 

the USA under appendix A of the Federal Energy Regulatory Commission (FERC) Merger 

Policy Statement (‘Orders 592 and 642’). Appendix A requires thecalculation of market 

concentration using the Herfindahl Hirschman Index (HHI) foraffected markets under 

different conditions. This model has been used successfully innumerous merger analyses filed 

with FERC. 

Potential suppliers into any market must pass a ‘delivered price test’ by 

comparinggeneration plus transmission costs to a given market price. Any supplier who can 

deliverpower to the affected market within 5% of the market price is considered a valid 

competitor. The destination market and market price is pre-defined and not determinedby the 

model. Total competing generation is limited to the amount that can be deliveredinto the 

market given existing transmission limits and market prices.  

5.1 CASM as a Linear Program (LP)  

In its simplest form, this problem can be formulated as an LP. The 5% price thresholdcan be 

simulated when a large supplier in the destination market is able to supply at 5%above the 

market price. If the destination market also has a large demand, all potential suppliers will fill 

up available transmission capacity, and HHI’s can be calculated by 

looking at the owners of delivered electricity. The formulation for CASm is stated as
1

:  

Minimise: cost for supplies at the destination market  

subject to: supply cost at destination < system lambda + 5%, for all suppliers 

supply < quantity available, for each supplier and tranche 

supply + flows in = flows out + “demand”, for each node 

line flows are adjusted for losses, for all interconnections 

line flows < available limit, for all interconnectionsThis LP is solved 

for each destination market and for a number of load conditions such as peak, off-peak, 

shoulder etc. As the LP minimises cost, the cheapest tranches ofelectricity will be delivered to 

the market, up to the available transmission capacity.HHI’s can be calculated by summing 

shares for the owners of each delivered tranche.  

5.2 Economic versus Fair Transmission Allocation  

Using this solution means the cheapest electricity is purchased to fill the demand, butmore 

expensive potential suppliers can be completely excluded from the market; whichis not the 

intention of FERC policy. All suppliers should be considered valid participants and gain 

access to the ‘market’. 

One way of achieving this is by notionally allocating portions of the transmission network 

to all ‘economic’ participants, meaning the cheapest suppliers are limited tohow much load 

they can supply given the transmission capacity limitations. Proratingtransmission capacity 

using a ‘fairness’ criterion is not easy to do using a mathematical program
2

. All suppliers will 

be explicitly ranked by the LP. Further, the problem is quitelikely to be highly degenerate, 

since prices are entered in cents and similar types ofstation are likely to have the same cost. 

This degeneracy can cause quite arbitrary-seeming results in the LP output. 

This degeneracy had the possibility of making the LP approach to the modelunworkable. 

However, maintaining the delivered 5% threshold and easy solution of acomplicated network 

system had considerable appeal. Previously models had madeextreme restrictions; such as 
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limiting suppliers to a single network path to enable asimple solution to be made. A less 

restricted model was likely to become a market-leader in the field.  

Orbit thought it might be possible to restrict inputs to the transmission system byusing a 

proration system. If each supplier was limited to injecting a ‘fair’ amount ofelectricity, the LP 

could then solve the model and results could be generated in the sameway as the ‘economic’ 

allocation; the 5% delivery threshold could still be considered tohold.  

These ‘fairness’ constraints could be considered in the same light as constraintsadded by a 

cutting plane algorithm for non-linear problems. Cut away ‘unfair’ suppliers,means arriving at 

a solution still feasible when compared to the original unconstrainedeconomic version of the 

model.  

5.3 Conflict Between ‘Fair’ and ‘Economic’  

Imposing rules in a marketplace can lead to undesirable outcomes, especially if rulesimpose 

severely uneconomic restrictions on market participants. This was the case with  

1 

This is the formulation format used in submission documents. 
2 

It 

might be possible using a complementarity formulation  

the proration algorithm developed for CASm. Some types of constraint would destroythe 

pricing information contained in the model invalidating our 5% price test. 

However, testing the constraints for the ‘fair’ solution is actually reasonably easy.  

� If some suppliers don’t actually supply up to their allocated limit, we know thatsome 

of the limits calculated are too high. A cheaper supplier is taking some ofthe transmission 

capacity allocated in theory to someone else.  

� If the total amount supplied is less than what would be supplied in the 

economicversion of the model, we could have allocated more transmission capacity toanother 

supplier. 

 

We thus have both a test criterion for ‘optimality’, and a stopping rule for an 

iterativealgorithm. Knowing this, we can test our algorithm against a variety of 

problems.Understanding the ‘size of the prize’ helps because the optimal solution may not 

beknown but at least we know how close we are to it.  

5.4 LP versus Heuristic  

This LP model was developed in only a matter of weeks while the transmissionprorating 

algorithm took months. Though it may have been impossible to solve this problem directly 

using mathematical programming, the relative effort required to build a heuristic suggested we 

should try very hard to find a mathematical formulation for thistype of problem. 

In terms of execution time, the heuristic part of the model is hundreds of times fasterthan 

the mathematical model part. In practice, this is a common ratio. The heuristic ispurpose-built 

for a specific task, and can take advantage of the specific structure of theproblem. The LP 

solver must be generic enough to solve any type of linear program.Although mathematical 

programming solvers have made major gains in performanceover the years, a purpose-built 

algorithm will generally solve in a fraction of the time.Combining an LP solver with custom-

built heuristics can be extremely successful ifcarefully managed.  

5.5 CASm in Practice  

The hybrid version of CASm has become a standard tool for Appendix A mergeranalyses in 

the USA. CRA has used the model, and it has generally been accepted in alarge number of 

major electricity sector mergers subject to FERC’s jurisdiction.  

6 Heuristic Case Study – Vehicle Load Builder (VLB)  

Orbit developed VLB to allocate palletised items to trailers for transport. The basicproblem 

was:  
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� There were multiple trailer loads of items to be sent.  

� Each item had a priority that indicated the last day it could remain unsent.  

� Lower-priority items can be sent today, or delayed if it helps the current trailers.This 

need is traded off with the fact the item will eventually become a ‘must go’and may hinder 

future trailers.  

� Trailer rules; such as axle weight, item crush limits, load stability, and item 

 

groupings exist and must all be maintained.From the outset, Orbit were certain this 

problem could not be solved via mathematicalprogramming in an acceptable time.  

6.1 Load Feasibility Creates Problems  

If we knew that items allocated to a given trailer would load feasibly, we could use a high-

level mathematical programming approach related to the knapsack problem to solve these 

models. Existing products appear simply to implement weight and volumeconstraints for 

items allocated to each trailer. Problems with this approach:  

� Items that look like they might fit on a trailer simply may not. If all the items are very 

weak, they may not be able to stack high enough for the load to fit insidethe trailer without 

damage.  

� Lowering weight & volume guidelines to mitigate the first problem will lose 

theopportunity to load up to legal limits when the products would fit.  

� A trailer loaded with heavy items will likely ‘weigh out’ with plenty of sparevolume 

remaining. Similarly, a trailer loaded with light items will ‘cube’ outwith the weight 

constraint slack. Only a trailer that weights out and cubes outsimultaneously can be 

considered to be truly full.  

� Simple constraints and guidelines cannot capture enough of the restrictions to  

 

reliably test the feasibility of a proposed load.For a company that ships thousands of 

trailers per day at around USD 1,500 per trailer,even small increases in shipping quantities per 

trailer are worth millions per year. 

The requirement for balancing a large number of conflicting guidelines and 

legalrequirements within each trailer made a mathematical programming approach at 

worstimpossible, at best unwieldy and slow. Orbit believed a heuristic-based program would 

best solve this problem.  

6.2 VLB Approach  

Using a mathematical programming approach, could potentially solve for every 

trailersimultaneously. However, by not guaranteeing each trailer in the solution was 

feasible,the whole solution may have been invalid if any given trailer was infeasible. A 

heuristicmight solve a trailer at a time, possibly giving away a lot in terms of a global solution 

byfollowing locally promising solutions instead of the global optimum. 

In our favour, however, is the fact that we know what the theoretical minimumnumber of 

trailers required is, since we know the total weight and total volume ofeverything that needs to 

be shipped. If our solution is close to this theoretical minimum,we can be confident that our 

heuristic is working well. If not, we know that further improvements may well be possible. 

Our basic method to solve this problem was:  

� Create a group of items that we theorise will fill a trailer.  

� Test the trailer for feasibility using a detailed trailer builder which can check 

thisprecisely.  

� If the trailer is feasible, possibly attempt to add more to it.  

� If the trailer is not feasible, either remove some items, or create a new group of 

 

items for testing.Where possible, Orbit developed multiple methods for solving each 

step, since alternateheuristics can sometimes perform better given special circumstances. 

Multiple methodstherefore give a better chance of achieving an acceptable outcome, even 

with difficultcombinations of products. 

We know the theoretical best outcome, so we can see how well we do against it, and target 
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development effort in the areas that are performing relatively poorly.  

6.3 Additional Types of Problems  

Additional difficulty levels in VLB include:  

� Layer fill – where pallets of items can be broken up into layers so that items willfit 

into gaps in the trailer.  

� Temperature classes – where certain items must be kept at particular temperatures, 

while others can travel in nearly any trailer.  

� Multiple orders – where groups of items must be kept together on trailers.  

� Live loading – where items are being produced in a known sequence from a 

 

number of production lines and must be assigned to a trailer immediately.Using a 

mathematical programming approach one of these types of problems would have ‘broken the 

camel’s back’. A heuristic may get more complicated or slower, butwill seldom become 

impossible to modify.  

6.4 Experience with VLB  

Based on experience at a number of sites, VLB saves around 10% of trailers (or adds 10% 

more items per trailer). At a site shipping around 100 loads a day, savings are approximately 3 

– 4 million dollars a year.  

7 Experience for all Model Types  

No matter what type of OR project is being undertaken some things hold true regardless:  

7.1 Data  

Collection and quality of data is always the biggest issue. Data is normally not available,or 

not available in the form required. If available, it often has major omissions or otherquality 

issues. An explicit budget should be created for data collection. On a fixed priceproject, 

serious consideration should be given to making data collection variable.  

7.2 Forest for the Trees  

Undertaking an OR modelling project may not be efficient. It might be better to buy afaster 

PC than to spend weeks making a slow model faster. Or buying a lighter fleet oftrucks would 

save more than building a model to increase shipping capacity.  

7.3 The Budget  

Any model can be improved with more time and effort spent on it. Therefore, there’s nomodel 

a client would not like to see improved – as long as the budget remained thesame; so a logical 

stopping point must be found. This is more art than science whendeciding the right place to 

stop.  

7.4 Get Something That Works  

Having something that works is a lot better than having something potentially better 

thatdoesn’t work. A poor model that’s available when required is better than a detailedmodel 

that hasn’t been completed. We can make something that’s slow run faster, butit’s better to get 

it running before we try for those improvements.  

Summary and Conclusions  

Approach  Advantages  Disadvantages  
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Optimisation  Find the best solution 

Generally quick to set up 

Complex trade-

offsperformed implicitly by 

thesolver May uncover 

quiteunexpected solutions 

(thatare good ones)  

Limited types of problem 

Limited size and complexity 

Small omission may 

causeproblem to 

becomeunsolvable May 

need to make 

majorsimplifications to gain 

feasibility Possibly slow run 

times  

Hybrid  
Balance between 

optimisation and heuristic  

 

Heuristic  Can find a solution to any 

problem No in-built limit to 

problemsize Additional 

functionalitycan be added 

Run times can be 

relativelyquick  

Results may not be 

optimal,or even close Each 

heuristic must be created for 

the purpose Normally a lot 

more effortthan an 

optimisation  

 

In practice, no model ends up being ‘pure’. Orbit’s NZ Post model had built in 

preprocessing heuristics to speed it up and allow for a solution. Our VLB software has 

a knapsack solver to solve some of the sub-problems to optimality. It’s a matter of 

balance and picking the best tools for the job.  
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Abstract 
 

The New Zealand Electricity Market (NZEM) operates on a bid clearing system where 

market participants submit generation offers, purchase bids and reserve offers for 

electricity.  The system matches purchase bids with generation offers to satisfy demand, 

while also ensuring enough reserve is scheduled to cover the risk of a major 

contingency event in the network. 

 Transpower, the operator of the national grid, schedule energy dispatch using a 

linear program model called the Scheduling, Pricing and Dispatch software (SPD).  SPD 

matches generation offers with purchase bids at minimum cost, while ensuring network 

and reserve constraints in the system are satisfied. 

 This project involves building a full scale model of SPD currently implemented 

by Transpower.  The project involves expanding on a current 18 node model of SPD to 

a full model containing all nodes throughout the country, and all transmission line and 

reserve constraints across the North and South Island. 

 This paper will outline the methodologies used in matching nodal prices through 

the network between the full scale model and actual market prices.   

 

 
 

1  Introduction 
 
The New Zealand Electricity Market (NZEM) operates by a system where generation 

offers from generating participants are taken together with purchase bids from 

purchasing participants.  These bids and offers are then matched in such a way to 

minimize the cost of electricity generation while meeting demand in an optimal manner, 

while at the same time complying with transmission constraints and reserve 

requirements across the national network.  Transpower, the national grid operator, 

determines an optimal dispatch and purchase plan using the Scheduling, Pricing and 

Dispatch software (SPD), which runs once for ever half hour block (trading periods). 
 

1
 
.1  Nodes 

The NZEM is represented as a series of nodes spread out across the North Island and 

South Island which are connected by transmission lines.  These nodes can be either both 

or one of the following: 

 

! Grid Exit Points – a point in the network where electricity will flow out of the 

network to local networks and consumers. 
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! Grid Injection Points – a point in the network where electricity will flow into the 

network from generators. 

 

A node being classed as a grid exit point indicates that there is demand for electricity at 

that point in the network.  This demand exists in the form of separate purchase bids 

unique to specific electricity companies.  A node being classed as a grid injection point 

indicates that there is generation of electricity at that point in the network.  This 

generation of electricity exists in the form of separate generation offers unique to 

specific generation stations and generation units. 
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.2  Generation Offers and Purchase Bids 

Generation offers and purchase bids are divided into a series of tranches where each 

tranche has its own MW quantity and price.  For generation offers, each tranche 

indicates a certain amount of electricity on offer at a certain price.  Larger offers of 

electricity are offered at larger prices, creating an increasing piecewise linear stack. 

 Purchase bids exist as decreasing piecewise linear stacks.  Each tranche 

represents a certain amount of electricity on demand, and the corresponding price that 

purchase bidder is willing to pay for this amount of electricity.  Purchase bidders are 

willing to pay a higher price for their initial electricity requirements, and will 

sequentially set lower prices for their demand for subsequent electricity requirements.  

This creates the decreasing stack. 

  To satisfy the demand in the network, SPD matches generation offers with 

purchase bids at minimal cost.  This results in the first tranches in each generation offer 

used first to satisfy the demand for the first tranches in each purchase bid.  If a price for 

a generation tranche is too high, that energy is not cleared.  If the price for a demand bid 

tranche is too low, that demand is not satisfied.  The maximised objective function for 

the linear programme in SPD (only concerning generation offers and purchase bids) is 

of the following form: 

 

 

Figure 1:  Objective Function (part 1) 

 

Note that if the purchase bid prices are too low, the demand will not be satisfied.  

Therefore prices for purchase bids are generally very large to encourage the satisfaction 

of demand. 

 

1.3  Transmission Constraints 
 
The objective function for SPD is maximised subject to network constraints in the 

model which must be satisfied.  These constraints take into account the capacities of 
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lines which connect nodes, voltage angles at each node in the network, and energy 

losses in each line. 

 Another important section of the transmission lines is the HVDC link connecting 

the North and South Islands.  The link exists as a set of two poles.  Electricity is allowed 

to flow either north of south through the link, and transmission losses and line capacities 

are also modelled in the link as constraints to the linear programme. 
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.4  Risk and Reserve 

An important part of the NZEM concerns accounting for the sudden loss of electricity 

supply to the network.  This occurrence is known as a contingency event, and represents 

the tripping of a generator in the network, or the failure of one or both poles in the 

HVDC link.  A contingency event will create a certain amount of electricity taken out of 

the system, known as Risk.  This Risk must be restored as quickly as possible to 

maintain system stability.   To ensure this is possible, energy is also dispatched in the 

form of reserve, and is put on schedule in case a contingency even occurs.  Reserve is 

offered in the following forms (called Reserve Types): 

! Partially Loaded Spinning Reserve (PLSR) - offered by generators. 

! Tail Water Depressed Reserve (TWD) – offered by hydro generators. 

! Interruptible Load (IL) – offered by purchase bidders in the form of energy 

purchased which can be sent back into the system. 

 

These three types of reserve are offered in the form of fast instantaneous reserve (FIR) 

and sustained instantaneous reserve (SIR) (called Reserve Classes).  FIR is offered in 6 

seconds and SIR is offered in 60 seconds.  Both these types of reserve are necessary to 

restore the system to a stable state after a contingency event. 

 Just like generation offers, reserve offers are offered in the form of tranches, 

where each tranche represents an amount of reserve being offered at a certain price.  As 

the amount of reserve offered increases, so does the price for the reserve.  Reserve 

dispatched is a cost to the system, therefore the objective function now becomes: 

 

 

Figure 2: Objective Function (part 2) 

 

Constraints in the model for reserve model restrictions on reserve dispatch based on 

generation and demand, and on the amount of risk in each island.  Therefore each 

reserve offer must be linked with a generation offer (for PLSR or TWD) or purchase bid 

(for IL). 
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.5  Prices 

Through finding an optimal solution for a particular date and trading period, SPD will 

determine generation dispatch levels, purchased demand, transmission line flows and 

reserve schedules.  A particular constraint in the network ensures the amount of 

electricity flowing into a node is equal to the amount flowing out of the node.  When 

SPD is solved to optimality, the dual variables for this constraint correspond to the 

prices of electricity at each node within the network.  These prices are a measure of how 

valuable electricity is at the corresponding nodes across the country. 
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.6  Project Goals 

PEDRO is an 18 node model of SPD which currently exits as a simplified version of the 

full SPD software without risk and reserve.  The goal of this project is to expand 

PEDRO to a full scale version of SPD as used by Transpower with all transmission line 

and reserve constraints.  This full version of SPD can then replace PEDRO and be used 

to perform testing, forecasting and benchmarking in other experiments involving the 

NZEM. 

 This paper will discuss the current processes undertaken in expanding PEDRO 

to a full scale model.  Current nodal price outputs will be presented together with an 

outline of the next stages in calibrating the model to match the performance of SPD as 

used by Transpower. 
 

2 Methodology 
 

To build a full scale model of SPD, the current 18 node model will be expanded to 

include all nodal, transmission and participant data.  Once the model is expanded, the 

same data set from PEDRO will be used for the Full SPD model and the results will be 

compared.  Debugging and calibration will be performed until both models produce the 

sam  objective function value. e
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.1  PEDRO 

The 18 node model PEDRO is a simplified version of SPD written in the AMPL 

modelling language and uses the CPLEX 10.0.0 optimizer.  The AMPL model file 

currently reads the data for the model from an AMPL text file data file.   

 Each node within the data for the model is a representation of a group of nodes 

in a certain section within the country.  Similarly, the transmission lines connecting the 

nodes are a representation of a set of transmission lines in the full model.  The model 

does not include risk and reserve. 

 PEDRO matches generation offers with purchase bits at minimum cost subject 

to transmission constraints in the network.  The system is modelled as a supply and 

demand network problem, where each node in the network has demand for electricity 

(from purchase bidders) and supply of electricity (from generation offerers).  Demand is 

simplified to a fixed quantity of demand, and supply is broken down into offer stacks 

for multiple generation offers at each node. 
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.2  Expanding PEDRO to Full Scale SPD 

Expanding PEDRO to a full scale version of SPD involved redesigning the way data is 

imported into the model.  The model will be required to solve over multiple dates and 

trading periods, therefore the data will continuously be changing.  The data required for 

the model initially exists within the Centralised Data Set (CDS) as CSV files.  The data 

within these files will be extracted and saved within an excel spreadsheet in a format 

30



  

which an AMPL run file can read using ODBC.  The ampl run file will then loop over 

the number of dates and periods present within the excel data sheet and store the nodal 

prices and any other required  information in a set which can then be outputted back to 

excel after SPD has solved over the time range.  The manner in which the transmission 

lines, generation offers and purchase bids are modelled in PEDRO is different to that of 

the CSV files.  Therefore as part of the process of expanding the model, the indexing 

systems for these participants will need to be changed to match the CSV files from the 

CDS. 

 

2
 

.3  Modelling of Generation Offers 

The generation offers within the CDS are indexed by node (grid injection point), station 

and unit.  A unique combination of these three indices represents a particular generation 

offer within the system.  For example, the grid injection point HLY2201 contains 6 

generation offers.  These are indexed as follows: 

 

Grid_Injection_Point Station Unit 

HLY2201 HLY 1 

HLY2201 HLY 2 

HLY2201 HLY 3 

HLY2201 HLY 4 

HLY2201 HLY 5 

HLY2201 HLY 6 

 

Figure 3:  Generation Offers 

 

Therefore at node HLY2201, we have 6 generation offer stacks.  These 6 generation 

offers make up the supply of electricity for this particular node.  Later it will be seen 

that reserve offers for PLSR and TWD reserve are also indexed by node, station and 

unit, therefore to match each PLSR and TWD reserve offer up with a generation offer, 

the generation offers need to be indexed in this way. 
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.4  Modelling of Purchase Bids 

The purchase bids within the CDS are indexed by node (grid exit point) and company.  

A unique combination of these two indices represents a particular purchase bid within 

the system.  For example, the grid exit point HLY2201 contains 6 generation offers.  

These are indexed as follows: 

 

Company Grid_Exit_Point

CTCT ADD0661 

GENE ADD0661 

MERI ADD0661 

MRPL ADD0661 

TRUS ADD0661 

 

Figure 4: Purchase Bids 

 

Therefore at node ADD0661, we have 5 purchase bid stacks.  These 5 purchase bids 

make up the demand for electricity for this particular node.  Later it will be seen that 

reserve offers for IL reserve are also indexed by node and company, therefore to match 

each IL reserve offer up with a purchase bid, the purchase bids need to be indexed in 

this way. 
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.5  Modelling of Risk and Reserve 

Data for reserve offers is supplied as reserve stacks for each reserve type and reserve 

class.  These stacks are divided into tranches, and are supplied for each participant 

offering reserve.  For PLSR and TWD reserve the participants are indexed by node, 

station and unit.  For IL reserve the participants are indexed by node and company.   

 Risk is calculated for each island and for each reserve class.  Within the SPD 

formulation, the risk is set equal to the maximum out of the dispatch for each generator 

and the flow through the HVDC link.  If the risk is equal to the largest generating 

participant, or the flow through the HVDC link (if it is larger than the largest generating 

participant) than its will also cover the event of a smaller source of electricity failing, 

therefore this is the risk which the reserve dispatch must meet.  The total amount of 

reserve dispatched across all reserve types must be equal to the risk in each island.  This 

is modelled for both reserve classes within the SPD formulation. 

 

2
 

.6  Model Functionality 

The model itself has been programmed in AMPL using CPLEX 10.0.0.  However the 

formatting of the data for the model has been set up in excel using VBA macros.  The 

AMPL run file uses ODBC to read tables containing data for the various sets for the 

model from the excel data sheet.  The prices, generation and reserve dispatch, purchased 

demand and transmission line flows are then outputted back to the excel data sheet 

ready for analysis. 

 The process of running the full scale version of SPD begins within an excel Run 

Book.  This Run Book exists within a directory which also contains the necessary data 

files needed for the model.  This data currently needs to exist in the form of excel files 

for generation offers, purchase bids, branch data and loss information and reserve 

offers.  Actual historical prices are also included within this data and will be read into 

the excel data book for comparisons with the prices outputted from the SPD model. 

 Within the Run Book the user must input the filenames of the data files, and 

must also ensure that the data contains the correct dates and trading periods.  When the 

user runs the model, VBA macros will open each workbook and extract the required 

information.  These macros also perform checks to ensure the data is valid, and will 

warn the user if errors are present.  The macros link generation offers and purchase bids 

with the nodes within the model, and also link reserve offers with generation offers and 

purchase bids.   

 Once all the data is verified, it is stored within arrays in VBA, and then 

outputted to tables from the arrays within the excel Data Book.  This is to reduce the 

computational time required for switching between multiple workbooks.  When the data 

has been formatted into tables within excel, the AMPL run file is then called using a 

batch file run command, which starts the SPD optimisation model.  The model will loop 

over each date and trading period present within the data, and then output the necessary 

information such as prices and dispatch data back to the excel Data Book.  The prices 

from the model are then compared with the prices from the historical data for analysis. 

 To verify that the model was functioning correctly, the data used for the original 

PEDRO model was re-formatted from the text data files into the excel Data Book.  Full 

SPD was then performed for this small data set and calibrating and debugging was 

performed until both PEDRO and Full SPD were giving the same solutions for the same 

sets of data. 

 

3 Current Results 
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At this current stage in the project, the full model of SPD has been coded and VBA 

macros have been written to format all necessary data, however the reserve section of 

the model has been commented out until it is certain that the basic model without risk 

and reserve is functioning correctly. 
 

Full SPD without reserve has been performed for a range of trading periods over two 

days, and the resulting nodal prices have been compared with the actual nodal prices.  It 

was observed that there are currently major differences between the prices from the 

model and the actual prices for certain periods, however for other periods the prices 

match very closely.  It is believed that trading periods between 12am and 4am of a day 

have a minimal reserve requirement.  This is because it is a time where generation is 

low which results in small risks in both islands, and therefore small reserve 

requirements.  Therefore the SPD model without reserve should be performing well for 

these periods, however several of these periods contain large errors. 

 The following graph compares the prices from the SPD Model and the prices 

from the CDS for period 2 for 1
st
 February 2007, a trading period and date where the 

average absolute error was very small: 
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Figure 5: Price Comparison 1
st
 February 2007 

 

It can be seen that there are some outliers: nodes MNI0111, WES0331 and TWC2201.  

These nodes are in fact spur-lines, meaning they are nodes connected to only one other 

node in the network.  It is possible that the optimal solution found by the SPD model 

has the same objective function value as the real solution found by Transpower, even 

though the optimal solutions are different.  It is possible that this is the case here due to 

the fact that all the other nodes are very close, and the only differences involve a price 

of 0 for both sets of prices. 

 

4 Next Stages 
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4
 
.1  Debugging 

The issues raised in the previous section concerning differences between prices between 

both sets of data need to be investigated to confirm that the full version of SPD without 

reserve is functioning correctly.  This can be done by investigating the differences for 

periods where reserve isn’t an issue (ie those periods between 12am and 4am of a given 

day). 

 Also an investigation needs to be performed for trading periods where the SPD 

model is performing well except for certain nodes.  This will involve breaking the 

network down into small subsets surrounding particular nodes and observing line flows. 

 When it is verified that the Full SPD Model is performing correctly, the risk and 

reserve sections will be incorporated into the model.  Comparisons can then be made for 

all other trading periods. 

 

4
 
.2  Introducing New Sections 

Other sections which need to be introduced into the model include  Mixed Constraints, 

Security Constraints and Ramping. 

 The Mixed Constraints section of the model which allows unique constraints to 

be applied to any variables within the formulation.  Such constraints are used to 

determine parameters within the risk and reserve sections which are currently 

approximated. 

 The Security Constraints section introduces constraints to line flows for groups 

of transmission lines which ensure that system stability remains intact should a 

particular transmission line fails within the network.  These are very important 

constraints which are always activated, and need to be incorporated into the full model. 

 Ramping is a section in the model which takes the generation dispatch from a 

certain trading period and uses it to constrain the generation dispatch for the next 

trading period.  This section will only have an effect on the solution during peak times 

of electricity, and should have a minimal effect for trading periods early and late in the 

day.  However to fully replicate SPD used by Transpower, this section will be included. 
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Abstract 

The Clutha River has two hydro stations, as well as a storage lake.  The Clyde station 

has a capacity of 432MW from 4 units.  The Roxburgh station has a capacity of 320 

MW from 8 units.  There is also a major storage lake, the Hawea which has a controlled 

release that is subject to resource consents.  This presentation will detail the methods 

used to model this system over a week with the objective of optimizing generator 

revenue.  The model must represent the system realistically, thus it takes into account 

the delays when releasing water from one lake to when the water arrives at its 

destination, as well as the limited storage in the lakes and restriction of flow along the 

rivers.  It must also model each turbine, and determine which units must be turned on or 

off.  The model also looks at reserve currently setting reserve targets which must be met 

in each trading period. 

 

1 The Clutha 

1.1 Layout 

The Clutha system has a main storage lake at Hawea, water leaving Hawea flows down 

to Lake Dunstan, and takes approximately 9 hours to arrive.  Lake Dunstan is a small 

storage lake which connects to the Clyde power station.  Water released at Clyde takes 

2-3 hours to reach Lake Roxburgh.  Lake Roxburgh is a storage lake which supplies 

water to the Roxburgh Power station; although this station is on one dam it connects to 

two separate nodes on the electricity network and thus is treated as separate power 

stations.   Figure 1 on the following page shows a diagram of the Clutha system. 
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Figure 1: The Clutha System 

 

1.2 Power Stations 

As stated previously there are two power stations in the Clutha system the Clyde station 

and the Roxburgh Station.  The Clyde station consists of four turbines and has a 

maximum capacity of 432 MW.  The Roxburgh station has a total of eight turbines and 

a maximum capacity of 320 MW.  However the Roxburgh station connects to two 

separate nodes, 3 turbines connect to one node, ROX110, and 5 turbines connect to 

another node, ROX220.  All of the turbines are the same so therefore ROX110 has a 

capacity of 120MW, and ROX220 has a capacity of 200MW.  The fact they connect to 

different nodes is important as the price separation can occur where the price at one 

node is not equal to the price at another node. 

2 The Model 

2.1 Objective 

The aim of this project is to build a model which maximises revenue over one week.  

Revenue can be calculated as the profit minus the cost, where the profit is equal to the 

amount generated multiplied by the price which it was sold for, and the amount of 

reserve sold, multiplied by the price of that reserve.  There are two costs associated with 

the system, the main cost is the cost of turning turbines on, and there is also a cost of 

running a turbine on tail water depressed.  A final term had to be added which is a water 

value at Lake Hawea, in order to determine how much water should be released over a 

week.  

Indices 

 j = stations: Clyde, Roxburgh110, Roxburgh220 

t = Period: 1...336 
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Parameters 

 Pjt = electricity price at station j time t 

 Rt = reserve price at time t 

 Cj = cost of turning on a turbine at station j 

 Tj = cost of running a turbine tailwater depressed at station j 

W = water value at Hawea 

 

Decision variables 

 pjt = generation at station j at time t 

 rt = reserve offered at time t 

 F = final lake level at Hawea 

 u
+

j,t = number of turbines turned on at station j at time t 

 �j,t = number of turbines used for tail water depressed at station j at time t 

 

Model CHERCO 

 1) Maximise ¦j ¦
336

t=1 pij.Pi, j.+¦
336

t=1 Rt.r,t .+�W.L -¦j ¦
336

t=1 u
+

j,t.Cj  -¦j ¦
336

t=1 

Tj.�j,t

 

2.2 Flow Constraints 

The flow along the river is constrained by resource consents this section will cover 

these constraints, and also the balance constraints on the river and lakes.  It is worth 

noting for this section that the model for the most part wraps around, thus water 

released from Hawea at the end will arrive at Dunstan at the beginning.  Also the lake 

levels must return to their initial level; however Hawea is excluded from this specific 

constraint, due to the water value. 

Indices 

i = lakes: Hawea, Dunstan, Roxburgh 

 j = stations: Clyde, Roxburgh110, Roxburgh220 

k = stations, lakes and junctions 

t = period: 1...336 

 

Parameters 

 y0t = initial lake storage at lake i at time t 

 Ii = inflow into lake i at time t 

 Uij = upper bound of flow along arc i, j 

 Lij = lower bound of flow along arc i, j 

UBi = upper bound of storage in lake i 

LBi = lower bound of storage in lake i 

2ij = the delay from node i to node j 

 

Decision variables 

 yit = lake storage at lake i at time t 

 xijt = flow along arc i,j at time t 

 

Model CHERCO 

 1) yit.= yit-1 + Ii + xjit-2ij – xikt Where ijk represent all stations, lakes and junctions 
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 2) for i in lakes  00, ii yy  

 3) ¦ji xjit-2i j= ¦ik xikt  for all t 

 4) ijijtij UxL dd  for all t 

 5) iiti UByLB dd  for all t 

 

Explanation 

 1) This balances the storage in each lake 

 2) Sets the initial lake level 

 3) Balances the flows along the arcs 

 4) Ensures that the flows along each arc do not exceed the resource consents 

 5) Ensures that the lake level stays within the resource consent boundaries 

 

2.3 Hawea Release Constraints 

There is a specific set of constraints related to the flow from Lake Hawea.  Resource 

consents only allow that the flow be changed by a certain amount depending on the 

current flow. 

Indices 

a = the different states for increasing flow rate 

 b = =the different states for decreasing flow rate 

t = period: 1...336 

 

Parameters 

  = amount flow can be decreased in state b 

  = amount flow can be increased in state a 

�

bQ
�

aQ

  = lower bounds of state a �

alob

  = lower bounds of state b �

blob
�

aupb  = upper bounds of state a 
�

bupb  = upper bounds of state b 

 

Decision variables 

 xt = flow out of Hawea at time t 

 = integer variable determining decreasing flow state  ,

�w tb

 = integer variable determining increasing flow state  ,

�w ta

 

Model CHERCO 

 1) ¦  
�

�  w
Aa

ta 1,

 2) ¦
�

��

� w�d
Aa

atatt Qxx .,1  

 3)  ¦¦
�

��

�

�� wddw
Aa

atat

Aa

ata upbxlob .. ,,

 4) ¦  
�

�  w
Bb

tb 1,

 5) ¦
�

��

� w�t
Bb

btbtt Qxx .,1  

 6)  ¦¦
�

��

�

�� wddw
Bb

btbt

Bb

btb upbxlob .. ,,

 

Explanation 
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 1) Ensures that it is only in one state for increasing flow 

 2) Sets the limit which flow can be increased by 

 3) Determines which state the model is in for increasing flow 

 4) Ensures that it is only in one state for decreasing flow 

 5) Sets the limit which flow can be decreased by 

 6) Determines which state the model is in for decreasing flow 

 

2.4 Unit Commitment 

The unit commitment determines how many turbines are switched on and how much 

power is generated.  This generation is a function of the flow through a turbine; this is 

estimated using linear piecewise functions. 

Indices 

i = lakes: Dunstan, Roxburgh 

j = stations: Clyde, Roxburgh110, Roxburgh220 

 m = pieces: 0,1,2 

t = period: 1...336 

 

Parameters 

 mj ,M = the width of piece m for station j 

 = the y intercept of the turbine curve at station j ja

 = the gradient of piece m at station j mjcc ,

 

Decision variables 

  = the number of turbines running at station j at time t j,tz

 = the number of turbines turned on at station j at time t 
�

tju ,

 = the number of turbines turned off at station j at time t  ,

�

tju

 =the amount of flow through piece m in station j at time t 
tmj ,,

 = the generation at station j at time t 

qcc

j,tp

 

Model CHERCO 

 1)  
��

� �� tjtjtjj,t uuzz ,,1,

 2)  . ,,,, tjmj zqcc
tmj
Md  

 3)  . ,0,,0, tjj zqcc
tj
Md  

 4)   
..0

,,¦
 

 
Mm

tmjh,j,t qccx

 5)      .. ,

..0

,,, tjj

Mm

tmjmjj,t zaqccccp � ¦
 

 

Explanation 

 1) Records the number of turbines turned on and off 

 2) Determines the flow through the pieces 

 3) Determines the initial flow through the pieces 

 4) The sum of the flow through the pieces equals the flow through the station 

 5) Determines the amount of power generated at each station 
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2.5 Reserve 

There are two types of reserve which are modelled, tail water depressed, and spinning 

reserve.  Tail water depressed is when a turbine is spun with air so that it can instantly 

run, however no water needs to be used, this has a cost associated with it which is 

shown in the objective function.  Spinning reserve is when extra capacity on an already 

running turbine. 

Indices 

j = stations: Clyde, Roxburgh110, Roxburgh220 

t = period: 1...336 

 

Parameters 

 = the maximum possible generation at station j j

 = the maximum possible generation of a turbine at station j 

M

jm

  = the number of turbines at station j jN

tRT = the target reserve which must be met 

 

Decision variables 

 j,tO  = the number of turbines in tail water depressed at station j at time t 

  = the number of turbines turned on for tail water depressed at station j at 

time t 

�

tj ,O

  = the number of turbines turned off for tail water depressed at station j at 

time t 

�

tj ,O

  =the amount of spinning reserve offered at station j at time t tjs ,

 = the generation at station j at time t tj

= the amount of reserve offered at time t 

p ,

tr

tjd , = the amount of tail water depressed reserve offered at station j at time t 

 

Model CHERCO 

 1)  
��

� �� tjtjtjj,t ,,1, OOOO
 2) jtjtj Nz d� ,,O  

 3) tjjtj md ,, .Od  

 4) tjjtjtj zmps ,,, .d�  

 5) jtjtj Ups d� ,,   

 6) ¦ ¦  
� �

t�
STATIONSj STATIONSj

ttjtj Rs ,, O
 

Explanation 

 1) Records the number of turbines turned on and off 

 2) The total number of turbines on must be less than the number of turbines 

 3) The amount of tail water depressed offered must be less than the capacity 

 4) The amount of spinning reserve offered must be less than the capacity  

 5) The total generation must be less than the maximum generation possible 

 6) The reserve target must be met 

 

3 Results 

This model was coded in AMPL/CPLEX.  The model was run over several week long 

periods, using historical data in order to validate it.  As the main objective is to 
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maximise profit the most important thing is that the model generates when the price is 

high and doesn’t when the price is low.  Another big factor is the turbines should not be 

turning on and off too much, unless there is a huge variation in prices, due to the costs 

associated with turning turbines on.   
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Figure 2: One week of generation 

 

As can be seen in Figure 2 above the CHERCO model generates when the price is high 

and eases off when the price is low, it is also rare for turbines to turn on and then off 

again very soon afterwards.   This shows that the model is behaving as it should.  The 

generation can be seen more clearly when only a single day is shown, Figure 3 on the 

following page shows the generation for the Monday of this week.  It is also worth 

noting that the high peaks of generation are where the model decides that it is worth 

sacrificing efficiency in order to generate more at high prices. 

51



Generation

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45

Period

G
en

er
at

io
n

 (
M

W
)

0

5

10

15

20

25

30

35

40

45

Clyde

Roxburgh220

Roxburgh 110

Price CYD

Price ROX220

Price ROX110

Figure 3: Monday generation 

 

 

 

 

The other important features are that the Hawea release constraints work correctly.  This 

can be seen in Figure 4 on the following page. 

 

52



Hawea release

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Period

cu
m

ec
s

Hawea Release

Figure 4: Hawea Release 

 

The last main point of interest for the generator is how Hawea is run over the week.  In 

Figure 5 below it was shown that it will run down the lake level then let it rise again, in 

this case the goal for Hawea is to return to its initial level. 
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Figure 5: Storage over the week 

 

 

4 Conclusions 

The CHERCO model represents the whole Clutha river chain.  It solves to optimise 

profit over a week given prices and inflows.  The results so far appear to be good, it 
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generates when price is high and doesn’t when the price is low.  One interesting 

conclusion from this project so far is that it can be worth sacrificing efficiency in order 

to take full advantage of high prices. 
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Abstract 
In crew scheduling, the aim of unit crewing is to keep groups of crew members from 

different crew ranks together, to operate a sequence of flights as a unit as much as 

possible. When such a group operates together for a sequence of flights, the sequence is 

called unit crewed. A unit crewed solution is considered to be more robust in the sense 

that aircraft departures are less likely to be delayed due to waiting for a  crew member.  

It is usual to solve the Tour-of-Duty (ToD) planning problem for each crew rank as a 

separate problem. To maximize unit crewing in the ToD solution, a set of ToDs for one 

rank in terms of minimal cost is constructed, and a weighted sum method is used to 

penalize any tour for the other rank that does not contain the same flight sequence.  

We believe that a model that solves the two ToD planning problems simultaneously 

can improve the number of unit crewing sequences without increasing the total crew 

cost. We developed a bi-criteria model with an additional set of constraints to ensure 

that the maximum number of unit crewing connections can be chosen between the two 

crew ranks subject to a planned crew cost the airline accepts to pay. 

1 Airline Crew Scheduling 

Commercial airlines are required to solve many resource scheduling problems to ensure 

that aircraft and aircrew are available for each scheduled flight. In this paper we 

consider the tour-of-duty (ToD) planning problem: finding sequences of flights to 

partition the flight schedule into ToDs that can be flown by one crew member. 

A ToD is an alternating sequence of duty periods and layovers, where duty periods 

comprise one or more flights, and may also include passengering flights. A 

passengering flight is one on which a crew member travels as a passenger in order to be 

positioned at a particular airport for a subsequent operating flight or to return to their 

home base.  

The first duty period of a ToD must start at a crew base, and the last duty period 

must end at the same crew base. An airline might have several bases (cities) at which 

crew are domiciled. Each ToD will have an associated crew complement made up of a 

number of crew of some ranks. 

Construction of a legal pairing is subject to a complex set of rules imposed by 

government and/or employment contracts. Those rules are very difficult to characterise 

mathematically in any other way than by enumeration. In addition, the cost of a pairing 

is usually a complex function of its components. Therefore, the ToD planning problem 

usually separates the problem of generating pairings from the problem of selecting the 

best subset of these pairings. 
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The cost minimization problem is then modelled under the assumption that the set of 

feasible pairings and their costs are explicitly available, and can be expressed as a 

generalized set partitioning problem (GSPP): 
 

 

 

 

 

 

  

 

where A is a binary matrix and e is a vector of ones. 

In the ToD planning model, each column or variable corresponds to one feasible 

ToD that can be flown by some crew member. The value of cj, the cost of variable j, 

reflects the dollar cost of operating the j
th
 ToD. The decision variable xj is equal to 1 if 

pairing j is included in the solution and 0 otherwise. The first set of constraints is 

referred to as flight constraints, and the second set contains the crew base balancing 

constraints. 

Each flight constraint corresponds to a particular flight segment and ensures it is 

included in exactly one ToD. The elements of the A matrix can then be defined as: 

 

 

 

However, if the j
th

 pairing includes the i
th

 flight as passengering flight, this will 

result in a column in which aij = 0. 

The ToD planning model is usually augmented with additional constraints that 

permit restrictions to be imposed on the number of crew resources included from each 

crew base. This set of constraints is referred to as crew base balancing constraints. 

These crew base balancing constraints ensure the distribution of work over the set of 

crew bases matches the crew resources. They require that the number of crews 

contained in the chosen pairings which originate at a given crew base must be between 

specified lower and upper bounds. Each crew base balancing constraint represents a 

crew base restriction for the respective crew base. In this case, bi is the 

maximal/minimal available resource, and mij is the resource attributed to the crew base 

balancing constraint i if pairing j is used. 

One of the main difficulties with the ToD planning problem is that the number of 

feasible pairings is extremely large even for relatively small problems, so generating all 

possible ToDs for the optimization problem is often impossible. To some extent, this 

problem can be overcome by using a dynamic column generation technique. A dynamic 

column generation technique generates columns during the optimization process, i.e. 

generation of pairings and solving the generalized set partitioning problem is done 

iteratively during the optimization process.  

To obtain an integer solution, a branch and price approach with special constraint 

branching strategy is used. The branch and price procedure is similar to the branch and 

bound technique, but dynamic column generation is used at each node of the branch and 

bound tree. Follow-on branching, which is a constraint branching strategy commonly 

used for this type of problem, forces or prohibits two flights to be operated as a 

subsequence in a pairing. On the one branches, all pairings that operate only one of the 

two flights are eliminated. On the zero branches, all pairings that operate both flights are 

eliminated. See Butchers et al (2001) for more details. 
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2 Operational Robustness 

The ToD planning problem is solved well before the flight schedule becomes 

operational. In this planning stage, all flights are assumed to have departure times that 

are both fixed and known. This assumption is often proven wrong when the crew 

schedule is actually implemented. ToDs are usually less expensive if crews spend less 

time on ground between arrival and departure of two consecutive flights, hence the total 

working or operating hours are minimized. 

Such crew schedules happen to become “de-optimized” in actual operation, as they 

are easily disrupted and chain impacts are usually found as a result. Thus, if the airline 

provides connection times between consecutive flights to both aircraft and crew 

members, which just satisfy the minimum time legally required, a late arriving flight 

will cause the following flight to depart late. However not only will the downstream 

flight that operates on the delayed aircraft depart late, but also the late arriving crew 

members who are changing aircraft will board late for their outgoing flights. After a few 

aircraft changes, many flights may be delayed by the initially minor delay. 

Furthermore, disruptions may require the use of reserve crews to get back on 

schedule and originally scheduled crew might not be able to continue on their duty 

because of rule violations. As a result, substantial unplanned costs, such as overtime, 

fuel costs and compensations for parking and passengers with delayed or cancelled 

flights, can be incurred. Therefore airlines do not only require minimum cost solutions, 

but are also very interested in robust solutions. 

      A robust ToD planning problem is the problem of obtaining aircrew schedules in 

planning that are not necessarily optimal in terms of the crew cost in plan but that yield 

low crew cost in operations. Approaches to robust aircrew scheduling have been 

developed only recently, and have different measures of operational robustness. 

Schaefer et al. (2001) solve a problem very similar to the original ToD planning 

model. However, they replace the objective coefficients cj in the model with the 

expected cost of the j
th

 ToD. The observed effect of this approach is to produce ToDs 

with lower operational cost than those produced with planned cost. 

Ehrgott and Ryan (2002) observe that  a robust solution would have the property that 

if an upstream flight is likely to be delayed, crew should not be scheduled to change 

aircraft for a successive flight, which leaves after only minimal ground time. Thus, 

crews change aircraft between operating flight sectors less frequently in a robust ToD 

solution. Based on this observation, they develop an objective function to penalize ToDs 

which are not robust. They then try to minimize this objective while at the same time 

maintaining a cost effective solution. 

Yen and Birge (2006) solve the robust ToD planning model with a similar 

robustness measure as described above (Ehrgott and Ryan) as a two-stage stochastic 

binary programming model with recourse by assuming the flight operation time is a 

random variable. 

Shebalov and Klabjan (2006) solve the ToD planning problem based on the 

observation of a recovery procedure that uses crew swaps. In addition to the traditional 

objective of minimizing the ToD cost, they introduce a new objective of maximizing the 

number of opportunities for crew swapping. Thus, their model is a bi-criteria 

optimization model. 

All approaches only consider the ToD planning problem for one crew rank, 

problems might arise when airline has to operate different crew schedules for different 

crew ranks during the same period of time. 
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Figure 1: Non-Unit Crewed Schedule 
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3 Unit Crewing 

In some airlines, crew members may have different employment contracts, different 

scheduling rules and different pay schemes, even if they belong to the same crew type. 

So ToD planning problems have to be solved separately for each crew rank. This might 

cause a crew to split up so that some members may join other crew members to make up 

a crew on one flight while other members may join a second crew for another flight. 

This splitting of the crew is not robust from an operational point of view.  

If an incoming flight arrives late, the crew members on that flight will arrive late 

which causes the crew members on board to be late for the downstream flight if the 

connection time between the two flights is tight. If members of the crew in the upstream 

flight split up and join other crew members to form new crews for downstream flights, 

then more than one outgoing flight will be affected. 

In fact, this affects the technical crew more seriously, as there are fewer options for 

the recovery procedure for technical crew than for the flight attendants, since the 

number of reserve flight attendants is higher than the number of reserve pilots, and 

flight attendants are able to work on different types of aircraft, whereas pilots can only 

operate certain fleet type(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normally, there are two types of pilots (the Captain and the First Officer) to operate 

one aircraft in Air New Zealand domestic operations. Figure 1 shows a flight Fr that has 

one Captain (Fr
C
) and one First Officer (Fr

F
) scheduled on its operation, with flight Fs 

and flight Ft both having short connection time to Fr. Fr
C
 was scheduled to join another 

First Officer to operate Fs and Fr
F
 was scheduled to join another Captain to operate Ft. 

If Fr is late on its arrival, then Fr
C
 and Fr

F
 will be on board late for their next operating 

sectors, Fs and Ft, respectively, i.e. both flights are delayed on their departure. 

Unit Crewing is an approach to constructing crew schedules so that members of a 

crew perform the same sequence of flights for as much of their duty periods as possible. 

A unit crewed schedule is considered to be more operationally robust in the sense that if 

members of a crew perform the sequence of flights for as much of their duty periods as 

possible, it is less likely to delay other flights due to waiting for a member of the crew 

from a disrupted upstream flight. 
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A unit crewing connection is a connection between two consecutive flights, Fr and 

Fs, where each member of the crew for Fr, operates Fs as a subsequence. Any 

connection between the start of a duty period and the first operating sector in the duty 

period is also considered to be a unit crewing connection.  

If some crew members operate flights Fr and Fs as a subsequence and some crew 

members operate Fs as a starting sector of their duty period, delay might occur on Fs if 

Fr is disrupted, as Fs needs to wait for the crew members from Fr. So if each crew 

member operates the sector Fs as a starting sector in their duty period, then that is a unit 

crewing connection between the start of duty and Fs.  

However, a connection between the last operating sector in the duty period and the 

end of that duty period is never considered as a unit crewing connection, as no 

downstream flight departure time is affected. 

It is usual to obtain a crew schedule for one rank in terms of minimal cost (i.e. the 

traditional ToD planning model in GSPP formulation) and then select as many unit 

crewing connections as possible when solving the next rank. A main drawback for this 

method is that the solutions might not be Pareto optimal when we consider the total 

planned crew cost for both ranks and the number of unit crewing connections as 

objectives. 

We believe that by solving both ranks simultaneously rather than in sequence it 

might be possible to lower the total crew cost with the same number of unit crewing 

connections. 

This is because before we solve the unit crew ToD planning problem, a cost 

optimized crew schedule for one rank needs to be found. When we construct the cost 

minimal crew schedule for this rank, connections in the ToDs were selected by 

considering the cost and feasibility of the schedule for this rank only, without 

considering the optimality (or even feasibility) for the other ranks. 

The only way to find ToD solutions for different crew groups that are unit crewed 

with each other is to solve the ToD planning problem for all ranks simultaneously, so 

that during the process of pairing generation, consecutive flight connections that are 

preferable for all ranks can be constructed. 

4 Bi-Criteria Model 

In the combination of two ToD planning problems, two sets of basic ToD constraints 

are involved in the problem, one for each crew rank. An additional set of constraints 

reflects the possible unit crewing connections between the two ToD planning problems. 

Therefore, two sets of flight constraints, defined by A1x1 = e and A2x2 = e, are 

included in the combined model. The columns of the matrix A1 correspond to possible 

pairings that can be flown by some crew member in the first rank (say the Captains), 

and the columns of the matrix A2 correspond to possible pairings that can be flown by 

some crew member in the other rank (say the First Officers). The vector of decision 

variables x1 represents which pairing is to be included in the Captains’ schedule, where 

x1j is equal to 1 if the j
th

 possible pairing that can be flown by a Captain is included in 

the Captains’ crew schedule and 0 otherwise. The vector of decision variables x2 

represents the First Officers’ schedule, where x2j is equal to 1 if the j
th

 possible pairing 

that can be flown by a First Officer is included in the First Officers’ solution and 0 

otherwise. 

Two sets of crew base balancing constraints, defined by M1x1 {!, =, "} b1 and M2x2 

{!, =, "} b2, representing the crew base restrictions for the Captain crew and First 
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Officer crew, respectively, are also included in the combined model. The Captains’ 

maximal/minimal possible resources are represented by b1i, and m1ij is the resource 

assigned to the crew base corresponding to the Captains’ constraint i if Captains’ 

pairing j is used in the Captains’ solution. The maximal/minimal possible resources that 

can be assigned to the First Officers are represented by b2i, and therefore m2ij is the 

resource assigned to the base corresponding to the First Officers’ constraint i if pairing j 

that can be flown by some First Officer, is used in the First Officers’ schedule. 

The value of c1j is the cost of operating the j
th
 possible pairing in the Captain’s set of 

ToDs. The value of c2j is the cost of the j
th
 possible pairing that can be flown by a First 

Officer. 

To ensure that all crew ranks follow the same connections between flights as much 

as possible, a set of unit crewing constraints are added. The unit crewing constraints are 

derived from the A matrices for the two ToD planning problems. The combination of 

the two ToD planning problems with unit crewing constraints is formulated as: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 0 is a vector of zeros, e is a vector of ones and A1, A2 and U1, U2 are matrices of  

zeros and ones. 

Suppose the set of unit crewing connections U is defined by U = T # S, where the 

set T represents all possible consecutive operating flight connections, and S is the set of 

first operating flights in any duty periods. Each element t in the set T can be defined as t 

= (Fr, Fs), where Fr and Fs are flight segments that need to be covered. If a crew 

member operates flight Fs as a subsequence of operating flight Fr, then the connection is 

represented by (Fr, Fs). Elements in the set S can be defined as connections between the 

start of a duty period and the first operating sector in the duty period. 

Each unit crewing constraint in the combined ToD planning problem corresponds to 

a particular element in the set U. The element u1ij of the U1 matrix is equal to 1 if the j
th

 

pairing, which can be flown by a Captain, includes the i
th
 connection of the set U and 0 

otherwise. The same definition applies to the elements of the U2 matrix, but for the 

pairings that First Officers can fly. Therefore, the i
th

 connection in the set U will be unit 

crewed if u1ijx1j – u2ikx2k is equal to zero, that is, if the j
th

 pairing is selected in the 

Captains’ solution and the k
th

 pairing is selected in the First Officers’ solution, in which 

both of the pairings contain the i
th
 flight connection in the set U. 

Remember that a completely unit crewed set of ToDs is unlikely to be obtained. So a 

slack and surplus variable is needed for each unit crewing constraint, to allow any non-
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unit crewing connections. The surplus variable s1i will be equal to 1, if the i
th

 

consecutive flight connection for the set U is selected in the Captains’ solution but no 

such connection is included in the First Officers’ schedule and 0 otherwise. The slack 

variable s2i will be equal to 1, if the i
th
 consecutive flight connection for the set U is 

included in the First Officers’ solution but this connection is not selected in the 

Captains’ schedule and 0 otherwise. 

The second objective function, denoted by s1 + s2, is the sum of all the slack and 

surplus variables for the unit crewing constraints, is the minimum number of non-unit 

crewing connections within the two crew schedules that we are looking for. 

5 Elastic Constraint Model 

To obtain all Pareto optimal solutions for the combined ToD planning problem with unit 

crewing constraints, we use the elastic constraint method, this method allows not only 

all Pareto optimal solutions to be found, but is also flexible enough to allow 

management to select a preferred solution for implementation. 

In the elastic constraint method, we solve the LP relaxation of the two cost 

minimizing ToD planning problems separately; this gives us an optimal planned total 

cost. This cost is then used to define the upper bound for the planned cost we accept to 

pay when we are minimizing the number of non-unit crewing connections. 

To limit the size of the combined problem, unit crewing constraints are not pre-

constructed. That is, constraints are not known a priori but are constructed during the 

optimization and branch and price processes. 

The process starts with a problem with no unit crewing constraint. The LP 

relaxations of two cost minimizing ToD planning problems are solved separately. We 

then construct unit crewing constraints based on the sum of fractional values for the 

consecutive connections of the two problems. The cost of each ToD is used to construct 

the elastic cost constraint and the optimal planned crew cost for the LP relaxation is 

used to define the upper bound for the planned cost. This yields a restricted problem 

with the following formulation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The right hand value for the first constraint is the planned cost we desired to pay. 

The new surplus variable for this cost constraint, sc, is introduced when the branch and 

price process begins, to reduce computational difficulties arising from this constraint 

(see Ehrgott and Ryan, 2002 for details). The cost coefficient for the surplus of the cost 

constraint is the penalty for violation of the cost constraint. 
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We only construct new constraints when there is no column returned from the 

column generator, i.e. when the current restricted master problem is optimal. To further 

reduce the size of the combined problem, we only select connections with sum of 

fractional values that is neither zero nor one in both problems to be part of the 

constraints in the model. That is, we only include connections as part of the unit 

crewing constraints once they are not unit crewed. 

To obtain integer solutions, the original branch and price process is used, but the 

time required is long. In order to speed up the branch and price process, we have to 

make some adjustment on the branch and price process. See later section for details. 

6 Dantzig-Wolfe Decomposition 

We tried to use a Dantzig-Wolfe decomposition approach to solve the combined model 

as well. The advantage of using this approach is that the structure of the original 

problems remains unchanged. Thus no complexity is added to the already difficult 

problems. The two independent ToD planning problems are the sub-problems under the 

Dantzig-Wolfe decomposition approach. The set of unit crewing constraints is included 

in the master problem under the Dantzig-Wolfe decomposition approach. 

The process starts with an empty master problem. When the i
th

 independent ToD 

planning problem is solved, this gives a matrix Xi, which represents a set of basic 

feasible solutions to the i
th

 ToD planning problem. The j
th

 column of the matrix Xi, xi
j
, is 

the j
th

 extreme point to the i
th

 ToD planning problem. 

When all sub-problems are solved, unit crewing constraints are constructed based on 

the optimal solution of the sub-problems. The crew cost for each extreme point is used 

to define the elastic cost constraint, and the total optimal planned crew cost of the two 

ToD planning problems is used to define the upper bound of the cost. The j
th
 extreme 

point, xi
j
, in the set Xi leads to a column in the master problem in the form of (ci

T
xi

j
, 

Uixi
j
, ei)

T
, where ei is a vector of two elements with the i

th
 element equal to 1 and 0 

otherwise. The master problem is formulated as: 

 

 

 

 

 

 

 

 

 

The element for the k
th

 unit crewing constraint in the j
th

 extreme point for the i
th

 ToD 

planning problem, ek
T
Uixi

j
, is simply the sum of fractional values for the k

th
 unit crewing 

connection in the solution xi
j
 (where ek is a vector of zeros with the k

th
 element equal to 

one). The j
th

 element for the vector ci
T
Xi is the crew cost for the j

th
 extreme point 

solution of the i
th

 ToD planning problem. 

The vectors of decision variables (!1, !2) can be interpreted as the weight on each 

extreme point for any feasible solution. The two new constraints are the convexity 

constraints, to ensure any feasible solution in the master problem is a linear convex 

combination of the extreme points of the bounded polyhedral set. 

After the master problem is constructed based on the extreme points found from the 

sub-problems, the master is solved to optimality in terms of minimal number of non-
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unit crewing connections, subject to the unit crewing constraints constructed from the 

optimal solution of all sub-problems. Extra unit crewing constraints are added based on 

the current solution of the master because the current solution of the master problem 

might contain non-unit crewing connections that are unit crewed in the optimal solution 

of the sub-problems. 

The restricted master problem is solved by repeating the processes of solving the 

master and including new unit crewing constraints. The optimal solution of the 

restricted master problem is obtained once no new unit crewing constraint is found. 

After the master problem is solved, the optimal dual variables of the restricted 

master problem, ("c, "u
T
, " 1, " 2), will be passed back to the sub-problems in order to 

generate some better columns for the master. The scalar, "c, is the dual variable 

associated with the cost constraint, and ("1, "2), are the dual variables associated with 

the convexity constraints for the two sub-problems. The vector "u
T
 is the dual vector 

associated with the unit crewing constraints of the master problem.  

To generated negative reduced cost column, the objective function of the first sub-

problem will be re-formulated as: 

 

and the objective function of the second sub-problem will be re-formulated as: 

 

and since "i is a constant, it is often ignored. 

Before we pass the master optimal dual vector to the sub-problems, appropriate 

adjustments on the dual values are required. If the optimal basis of the master contains 

the k
th

 slack variable for the unit crewing constraint, ek
T
s2, with a value of 0, this is the 

same as to have the k
th

 surplus variable, ek
T
s1, with a value of 0, and vice versa. 

If the k
th
 slack variable for the unit crewing constraint is in the basis, then the k

th
 

element of "u will be negative. This negative dual value tells the second sub-problem to 

generate solutions contain the k
th

 unit crewing connection if it is possible, but to avoid 

this connection in the first sub-problem. The same implication holds if the surplus 

variable is in the basis, but the first sub-problem will generate solutions containing this 

connection while this connection is avoided in the second sub-problem. So if the basis 

of the master contains a slack or surplus variable with a value of 0, we have to adjust the 

dual value for this slack/surplus corresponding constraint to be 0. This means we put no 

preference on this connection in both sub-problems. 

The processes of solving the restricted master problem to optimality and generating 

columns for the master are repeated until no columns are return to the master from any 

of the sub-problems. 

Note that it is not necessary for the slack and surplus variables for the unit crewing 

constraints in the master problem to be binary. If the sub-problems are integral, the 

slack and surplus variable for the unit crewing constraints in the master problem will be 

naturally integer. However, it is not wise to solve each sub-problem to integrality before 

including it as a column of the master by the consideration of solution time. So a good 

branch and bound strategy together with appropriate adjustment is needed to obtain 

integral solutions. 

The value of ek
T
UiXi!i is the preference to the master problem on the k

th
 connection 

in the i
th
 sub-problem. If the value of ek

T
UiXi!i is close to 1, the master prefers to 

include the k
th
 connection in the i

th
 crew schedule, and the connection is not favoured if 

ek
T
UiXi!i is close to 0. 

 )(Minimize 111 !!! """ xc
T

u

T

c 1
U

 )(Minimize 222 !!! "+" xc
T

u

T

c 2
U
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This makes up our branching strategy, as each element for the unit crewing 

constraint represents the sum of fractional values of the corresponding connection, and 

the value of ek
T
UiXi!i is the linear combination of the sum of fractional values on the k

th
 

connection from extreme points generated from the i
th

 sub-problem. This means we 

select a branch for the follow-on branching strategy base on the value of UiXi!i. If 

ek
T
UiXi!i is close to 1, then a 1-branch should be imposed on the k

th
 connection in the i

th
 

sub-problem, as this might yield a better solution. And a 0-branch on the k
th
 unit 

crewing connection if the value of ek
T
UiXi!i is close to 0. 

The value of the slack and surplus variables for the unit crewing constraints in the 

master problem can be seen as the likelihood for the connection to be unit crewed. If the 

slack and surplus values for the k
th

 unit crewing constraint are both close to 0, then the 

k
th

 connection is more likely to be unit crewed. In other words, the preference to occupy 

this connection is the same for both crew members, that is both crew members are going 

to occupy this connection or they are not going to take this connection, and hence the 

same branch should be imposed in the sub-problems. If the slack or surplus value is 

close to 1, then this connection is less likely to be unit crewed and opposite branches 

should be imposed in the two sub-problems. 

If a 1-branch is imposed on the k
th

 connection in the i
th

 ToD planning problem, then 

this sub-problem will always generate solutions containing the k
th

 connection. That is, it 

always generates solutions leading to a column in the master problem with a value of 

one at the k
th

 element of the unit crewing constraints, i.e. the value of ek
T
Uixi must be 

equal to 1, where xi is any solution generated from the i
th
 sub-problem after a 1-branch 

is imposed on the k
th

 connection. To ensure the master selects this connection, we have 

to remove all columns from the master problem generated previously with the k
th
 

element of UiXi not equal to 1. Same adjustment is performed if a 0-branch is imposed, 

but all columns with the k
th
 element of UiXi not equal to 0 are removed from the master. 

7 Computational Difficulties 

It is difficult to obtain an integral solution for the combined ToD planning problem with 

unit crewing constraints, as the sum of fractional values spread on many connections. 

This problem observed severity if we allow too many unit crewing constraints in the 

combined model or when we use the Dantzig-Wolfe method to solve the problem. 

To overcome this problem, we have to limit the number of unit crewing constraints 

allowed in the problem and to impose a 1-branch on the unit crewed connection if it is 

operated on the same aircraft. 

In the original branch and price process, we often impose 1-branch on a connection 

with sum of fractional values close to 1. But in our modified process, we also impose a 

1-branch on connection with sum of fractional values equals to 1 if this connection is on 

the same aircraft and unit crewed. This is to prevent those originally unit crewed 

connection to become non-unit crewed. 

Another advantages on impose 1-branch on those unit crewed connections are 

connections in the underlying flight network are limited and number of variables are 

reduced. The deduction on the flight network makes the column generation process 

faster and the deduction on number of variables makes the reduced cost calculation 

faster. 

From our observations, if there is not enough 1-branches to solidify the flight 

network at the first LP relaxation, problem of spread over remained. Since the spread 

over of the sum of fractional values is caused by the unit crewing constraints and the 
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more unit crewing constraints are included in the model, the worse of the problem. So 

we have to limit the number of unit crewing constraints in the model. 

This means we have to choose what kind of connections should be formulated as 

unit crewing constraints when we have more non-unit crewed connections than number 

of constraints allowed. 

This causes other problems. As if too few constraints are allowed in the model, good 

quality unit crewed schedules cannot be obtained. But while if too many constraints are 

allowed, problem of spread over remained. 

8 Computational Results 

Next we report the implementation results for the test problem based on a domestic 

flight schedule. The test problem is a 7 day flight schedule consisting of 442 flights. 

This schedule services seven cities (Auckland, Christchurch, Dunedin Hamilton, 

Rotorua, Queenstown and Wellington), with Auckland, Christchurch and Wellington as 

the crew bases. 

With this moderate sized flight schedule, 253594 connections were generated from 

the flight network. This means we can include as many as 253594 unit crewing 

constraints into the combined problem. 

Following table gives a brief summary on the performance from different methods. 

The second column of the table shows the total crew cost for the two ranks, the third 

column shows the percentage increase on total crew cost in compare to the LP optimal. 

The fourth column shows the number of non-unit crewed connections and the fifth 

column shows the number of unit crewed connections. The last column shows the time 

required to obtain the solution. 

 Cost % Increase u  u Time 

Separate 743035 0.2024% 239 690 20 mins 

Combined 742061 0.0711% 1 809 2 hours 

Dantzig-Wolfe  743825 0.3090% 1 812 8 hours 

Only 10 minutes are required to solve the ToD planning problems for each of the 

two ranks separately. We solved the same problem with a limit of 100 unit crewing 

constraints and right hand size values of LP optimal and a penalty of 0.01 on each dollar 

cost violation under the combined model and Dantzig-Wolfe method. With no 

significant increase in crew cost, we obtained a set of schedules which are nearly perfect 

unit crewed. However, we need a lot longer time when we use the Dantzig-Wolfe 

method. 
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Abstract 

An optimization tool is developed to assist water companies to choose optimal well 
locations in a confined aquifer in order to maximize the expected profit of pumping 
and selling water subject to uncertainty in the conductivity of the porous media over a 
confined aquifer. This tool simulates the groundwater flow to measure the change in 
head at specified head observation points due to pumping. This information is then 
used in the optimization model to determine the well locations. 

An expected value model is solved first to obtain an expected value solution. If the 
solution is not acceptable, a more expensive two-stage stochastic model is solved to 
find a solution that is better hedged against the uncertainty in the conductivity.  

For the case study considered, solving the two-stage stochastic model improves 
the maximum profit by a significant amount compared to solving the expected value 
problem. 

 

1 Introduction 
 

Groundwater is defined as freshwater contained in aquifers below ground.  
Groundwater is accumulated by rainfall sinking into the soil over a long period of 
time. When rain water reaches the earth’s surface it keeps going down until it 
penetrates through the soil to be stored in aquifers [1]. An aquifer which is confined 
between two impermeable aquitards is defined as a confined aquifer. A well that goes 
through a confining layer is known as an artesian well [2]. Because of its abundance 
and purity, it is an important resource for providing fresh water in many locations. In 
this optimization tool, a set of candidate well locations must be given and optimal 
well locations are chosen within the set. Head observation points are sampled over the 
confined aquifer to monitor the overall water table dropping over the operational field. 

In a confined aquifer, the hydraulic head h  is a linear function of the pumping rate 

vectorq , 

!
=

+=
n

j

jiji qahh
1

0)(q

, 

where 0

i
h is the initial head at a head observation point i without pumping at candidate 

well location j and j
q is the new applied pumping rate at candidate well location j. 

The response coefficient ij
a  is equal to the head drop at an observation point i  due to 

a unit flow at candidate well location j  [3]. The simulation software COMSOL is 

used to determine the response coefficients [4]. 
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Stochastic programming can be used to make optimal decisions while taking into 
consideration uncertainty as to how the future might unfold. Two-stage stochastic 
programming is a widely applied model for problems where a decision (the first-stage 
decision) must be made before a random event is realized and another decision (the 
second stage decision) will be made after the random event is realized. The 
fundamental idea behind the two-stage stochastic model is the concept of recourse. In 
the context of the problem studied here, the recourse action is a pumping policy for 
the active wells (the first-stage decision) after the conductivity of the porous media is 
realized by drilling wells. By searching for an optimal location decision and a 
collection of pumping policies in response to conductivity scenarios, it aims to 
maximize the expected return less the expected pumping and construction costs 
subject to the following design criteria: 
• The construction cost is constrained by a financial budget. 
• The number of wells is constrained by limited construction resources. 
• Both horizontal and vertical wells are possible with advanced directional 

drilling. Vertical wells are cheaper but horizontal wells are more efficient. 
• Over pumping must be controlled to avoid excessive water table drop. 
• Some locations are not considered viable for construction of water wells due to 

environmental concerns or technical difficulties. A set of candidate locations are 
given. 

Because stochastic programs can be computationally expensive to solve, simpler 
approaches are sometimes opted for. A widely used approach is to replace all the data 
with their expected values and solve a smaller deterministic problem. This is called 
the expected value problem (EV). The expected profit obtained from implementing 
the EV solution in every conductivity scenario is EEV. The expected profit obtained 
from the two-stage stochastic model is denoted RP. The maximum profit in each 
conductivity scenario can be solved individually and the expected profit is denoted 
WS. In stochastic programming, for a maximum problem, a basic inequality states that 

WSRPEEV !! [5]. Therefore, the expected value of the EV solution EEV is a lower 

bound on the stochastic solution RP and the WS solution is an upper bound on the 
stochastic solution. In practice, the EV problem should be solved first and the solution 
for optimal well locations is computed. Furthermore, the EEV solution and the WS 
solution are computed. If EEV is close toWS , it means that the uncertainty is not 

significant in the model. While the stochastic model might increase the computational 
cost and time significantly, the EV solution should be accepted as the business plan. 
On the other hand, if EEV is far belowWS , the stochastic model is recommended to 

make a better decision on well locations in order to compute the improved solution 
RP.  
 

2 The Expected Value Problem 
 
Before formulating the model, the conductivity over a confined aquifer is dealt with 
by creating a set of conductivity scenarios W. See Appendix A for more details. Once 
the conductivity scenarios are generated, the response coefficients at head observation 
points due to pumping at candidate well locations are simulated. The expected 

coefficients ij
a  are computed as  

!
"

=
Ww

wijwij apa , 
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where 
w
p  is the probability of each conductivity scenario occurring and wij

a  is the 

response coefficient at head observation point i due to pumping at candidate well 
location j in each scenario Ww! . 

The deterministic expected value problem is formulated as follows: 
Indices: 

i: Head observation point 
j: Candidate well location 
 

Parameters: 
0ih  = Initial head at location i 

i
!  = Percentage maximum head drop at location i  
lQ  = Lower bound on total pumping rates 
u
Q  = Upper bound on total pumping rates 
l

jq  = Lower bound on pumping rate at location j 

u

j
q  = Upper bound on pumping rate at location j 

l
N  = Lower bound on the number of active wells 
u

N  = Upper bound on the number of active wells 

jf  = Construction cost at location j 

j
c  = Pumping cost per unit flow at location j 

ij
a  = Response coefficients in the expected scenario 

b  = Financial budget  

t  = Total operating time in seconds every year 

r  = Conversion factor between the future return and the net present value 
sp = Water selling price per cubic meter 
 
Decision variables: 

j
x  = Candidate location decision variable at location j 

i
h  = Head at location i in the expected scenario 

j
q  = flow at location j in the expected scenario 

 
Objective:  

(2.1)  Max rtqcspxfz
Jj

jj

Jj

jj !!
""

#+#= )(  

Constraints: 

(2.2)  bxf
Jj

jj !"
#

   Jj!"  

(2.3)  u

Jj

j

l NxN !!"
#

  Jj!"  

(2.4)  j

u

jjj

l

j xqqxq !!   Jj!"  

(2.5)  u

Jj

j

l
QqQ !!"

#

  Jj!"  
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(2.6)  j

Jj

ijii qahh !
"

+=
0   Ii!" , Jj!"  

(2.7)  0)1(
iii
hh !"#    Ii!"  

(2.8)  }1,0{!jx , 0!
j
q , 0!

i
h  Ii!" , Jj!"  

The objective function (2.1) is to maximize the revenue over the time horizon less 

the pumping and construction cost. The well location decision variable j
x  is 

constrained by the financial budget (2.2) and the construction resource (2.3). The 

pumping rate variable j
q  is constrained by the allowable range of pumping rates (2.4) 

and the range of the total pumping rates (2.5). The head variable 
i
h  is dependent on 

the pumping rate variable j

q  (2.6) and subject to the maximum head drop (2.7) at 

head observation point i. Constraints (2.8) impose the integrality requirements on the 
well location decision variables, and the non-negativity requirements on the head 
variables and pumping rate variables. 

Once the expected value solution x  is calculated, we are in a position to decide 

whether to accept this solution or not. The decision is made based on the difference 
between EEV and WS. The EEV solution is the expected profit obtained by 
implementing the solution x  and solving for the optimal pumping policy in every 

conductivity scenario. The WS solution is the expected profit obtained by solving for 
the optimal well locations and the pumping policy in each conductivity scenario.  
 

3 The Two-Stage Stochastic Model 

 
In this section, the two-stage stochastic model is formulated. As the stochastic model 
requires more data and computational time, it is only recommended when the 

expected value solution x  does not produce a satisfactory result, i.e. EEV greatly 

differs fromWS . 

In the context of pumping water, the first-stage decision is to determine which 
well locations to use in each scenario, i.e. active wells. The second-stage decision is to 
determine the pumping policy for the active wells in each scenario.   

The complete formulation is as follows: 
Indices: 

i:  Head observation point 
j:  Candidate well location 

w: Conductivity scenario 
Parameters: 
0

i
h  = Initial head at location i 

i
!  = Percentage maximum head drop at location i  
l
Q  = Lower bound on total pumping rates 
u
Q  = Upper bound on total pumping rates 
l

jq  = Lower bound on the pumping rate at location j 

u

j
q  = Upper bound on the pumping rate at location j l
N  = Lower bound on the number of active wells  
u

N  = Upper bound on the number of active wells  
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jf  = Construction cost at location j 

j
c  = Pumping cost per unit flow at location j 

wij
a  = Response coefficients in the scenario w 

b  = Financial budget  

t  = Total operating time in seconds every year 

r  = Conversion factor between the future return and the net present value 
sp = Water selling price per cubic meter 
 
Decision variables: 

j
x  = Candidate well decision variable at location j 

wi
h  = Head at location i in the scenario w 

wj
q  = Pumping rate at location j in the scenario w 

 
Objective: 

(3.1)  Max })(){(! !!
" ""

#+#=
Ww Jj

wjj

Jj

jj rtqcspwpxfz  

Constraints: 

(3.2)  bxf
Jj

jj !"
#

   Jj!"   

(3.3)  u

Jj

j

l NxN !!"
#

  Jj!"  

(3.4)  j

u

jwjj

l

j xqqxq !!   Jj!" , Ww!"  

(3.5)  u

Jj

wj

l QqQ !!"
#

  Jj!" , Ww!"  

(3.6)  wj

Jj

wijiwi qahh !
"

+=
0   Jj!" , Ww!" , Ii!"  

(3.7)  0)1(
iiwi
hh !"# $   Ww!" , Ii!"  

(3.8)  }1,0{!jx , 0!
wj
q , 0!

wi
h  Jj!" , Ww!" , Ii!"  

The objective is to maximize the expected profit RP (3.1).  The well location 

decision variable j
x  is constrained by the financial budget (3.2) and construction 

resources (3.3). The pumping rate variable wj
q  is constrained by the allowable range 

of pumping rates (3.4) and total pumping rates (3.5). The head variable 
wi
h  is 

dependent on the pumping rate variable wj
q  (3.6) and constrained by the maximum 

head drop (3.7). Constraints (3.8) impose the integrality requirements on the well 
location decision variables, and the non-negativity requirements on the head variables 
and pumping rate variables. 

4 A Case Study 

 
In this section, we use a sample problem to test both the expected value model and the 
two-stage stochastic model.  

4.1 Problem 
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A water company recently secured a grant on a piece of land to construct water wells. 
Water will be supplied to local households and commercial users at a price of $1.45 
per cubic meter.  The pumping cost of one cubic meter is $0.28. A set of candidate 
well locations and associated pump types permitted to construct water wells are given.  
Some locations are not considered viable for construction of water wells due to 
environmental concerns or technical difficulties. A financial budget of $1,500,000 has 
been allocated to this project. The company’s resource consent limits construction to 
at most six wells. A horizontal well costs $300,000 and a vertical well costs $100,000. 

The water company would like to use the models created in this project to find the 
optimal construction locations in order to maximize the expected profit over 10 years. 
The profit will be converted to a net present value. The interest rate is 8%. 

4.2 Conductivity scenarios 

Ten equally likely conductivity scenarios with equal probability are created using a 
conductivity estimation algorithm. See Appendix A for more information. 

  
Figure 1: Two conductivity scenarios 

4.3 Values of parameters 

The minimum and maximum pumping rates of a well are provided by the construction 

company. The minimum pumping rate is daym /100
3  and the maximum pumping rate 

is daym /6000
3 . The operating time is 90% of a full day. Converting to SI units, 

smq
l

j /00126.0
3

=  and smq
u

j
/07.0

3
= . 

The initial hydraulic head over this confined aquifer is m500 . The maximum head 

drop at observation points is m100 , i.e 2.0=
i

!  Ii!" . 

The values for the minimum and maximum total stress rates are not available 
therefore the lower and upper bounds on total stress rates are dropped for this 
problem.  

The selling price sp is $1.45. The pumping cost c  is $0.28. The construction cost 

f  of a horizontal well is $300,000. The construction cost f of a vertical well is 

$100,000.  The maximum number of active wells u
N is 6. The financial budget b  is 

$1,500,000. The operating time per day is 90% of 24 hours. 

4.4 Expected value problem 

The expected value problem was first solved to obtain the EV solution x which is 

shown below in Figure 3. The WS solution is $114,155,000 and the EEV solution is 
$109,747,000. The gap between the WS solution and the EEV solution is $4,408,000. 
This result suggests the two-stage stochastic model might produce a better solution. 
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Figure 2: Optimal well locations obtained from the expected value problem 

  

4.5 Two-stage stochastic model 

The two-stage stochastic model was implemented with the aim of finding a better 
solution. The optimal well locations obtained from this model are shown in Figure 4. 
The RP solution is $113,435,000. Compared to the EEV solution, this solution 
increases the expected profit by $3,718,000. This result suggests that the two-stage 
stochastic model generates a better solution by considering every conductivity 
scenario. The optimal well locations are better hedged against the uncertainty in the 
conductivity of the porous media.  

 
Figure 2: Optimal well locations obtained from the stochastic model 
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5 Conclusions 

 

In conclusion, an optimization tool is developed to choose optimal well locations in a 

confined aquifer in order to maximize the expected profit subject to uncertainty in the 
conductivity over a confined aquifer. The first method is to take the expected 
conductivity scenario and solve for the optimal well locations. If the EEV solution 
associated with these optimal well locations greatly differs from the WS solution, the 
two-stage stochastic model is implemented with the desire of producing a better 
solution; if the EEV solution is close to the WS solution, these optimal well locations 
are accepted. A case study showed that the uncertainty in the conductivity over a 
confined aquifer would have a significant impact on the choice of optimal well 
locations.  
 

Appendix A Generating Conductivity Scenarios 

 
A conductivity scenario is generated as the follows:  

• Four points, kp , k=1,2,3,4, are chosen over the confined aquifer 
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• In each scenario w, the conductivity 
wk
c  at each point k is randomly generated 

from its corresponding triangular distribution. A triangular distribution is 

defined by three parametersa , b and c . The values fora , b  and c  for each 

point is given in the following table. The unit is sm / . 
 

Location a b c 

p1     0.0008 0.24 0.08 

p2 0.000005 0.02 0.5 

p3 0.000001 1 0.00002 

p4 0.00001 1 0.358 

 
The conductivity value at any other point is computed using the following 
algorithm 
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Abstract

This talk will provide an overview of how game theory is currently being ap-

plied to problems in operations management, including coordination within supply

chains, competition across horizontal competitors and revenue management with

strategic consumers. Successes and limitations of the methodology will be discussed,

leading to suggestions for future research directions.

Gérard Cachon is Fred R. Sullivan Professor of Operations and Information

Management, The Wharton School, University of Pennsylvania, where he has been

since 2000. He has won numerous teaching awards at Penn and his former institu-

tion Duke University. He is coauthor with C. Terwiesch of Matching Supply with

Demand: An Introduction to Operations Management, McGraw-Hill, 2005. He is

visiting the University of Auckland Department of Engineering Science until June

2008.
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Optimization of Product Placement in a Retail

Environment

Garrett van Ryzin
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Abstract

We consider the impact of physical locations on the sales of a product assort-
ment. We propose some heuristics to solve the placement optimization problem
that combine the subjective rules of human planners with optimization modeling.
Extensions of the technique and on-going work on placement optimization are dis-
cussed.

77



Siren Live – Software for Realtime 

Optimised Ambulance Redeployment

Jeff Meyer 

The Optima Corporation 

Auckland, New Zealand 

j.meyer@TheOptimaCorporation.com 

Andrew Mason 

Dept of Engineering Science 

University of Auckland 

New Zealand 

a.mason@auckland.ac.nz 

Abstract
In 2001, the ambulance service in Melbourne approached the University of Auckland 

seeking software that could simulate their ambulance operations. By starting from an 

early research tool developed by Andrew Mason and Shane Henderson, this software 

was duly delivered as part of a collaborative effort between the University and The 

Optima Corporation. Thanks to significant ongoing development and marketing efforts 

by Optima, this Siren Predict software is now being used (or being implemented) in 

Australia, Britain, Canada and Denmark.  

Siren Predict is a simulation tool that enables different scenarios to be modelled and 

explored for planning purposes. As a simulation, Siren Predict contains sufficient 

decision making capabilities to mimic typical operational procedures such as deciding 

which vehicles to send to a call or what hospital to transport a patient to. 

Siren Live is the first of a suite of tools being developed by Optima that will deliver 

more advanced real-time decision making capabilites to the providers of Emgergency 

Medical Services. Siren Live is an integrated system that receives real time updates of 

ambulance position and status, and uses this information to analyse the current 

capability to quickly respond to potential future calls. When vehicle coverage is poor in 

an area, Siren Live recommends that a redeployment operation be conducted in which 

idle vehicles are moved from one waiting location to another to improve overall 

coverage. Siren Live uses an integer programming model to generate these 

redeployments. 

In this presentation, we will present a demo of the Siren Live system and discuss our 

experiences in implementing this operations research technology in Canada and 

Australia. 
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Abstract

In airline scheduling a variety of planning and operational decision problems have

to be solved. We consider the planning problems aircraft routing, crew pairing and

flight re-timing. Aircraft and crew must be allocated to flights in a schedule in a

cost minimal way. Additionally, the departure times of some flights are allowed to

vary within some time window.

Although these problems are not independent, they are usually formulated as

independent mathematical optimization models and solved sequentially. This ap-

proach might lead to suboptimal allocation of aircraft and crew.

We solve the aircraft routing and crew pairing problem with an iterative ap-

proach, alternately solving aircraft routing and crew pairing. This approach gener-

ates a series of low cost solutions that are also robust to disruptions that may occur

during operations. The solutions show large improvements in terms of cost and ro-

bustness compared to the sequential solution. They also show the trade-off between

cost and robustness enabling the choice of a preferred solution for operation.

We present an approach to allow flexibility for the departure times of the flights

within the iterative approach. We demonstrate on real world data sets how effec-

tively time windows further improve the robustness of the solutions.

In airline scheduling a sequence of planning problems must be solved (see e.g.

Klabjan (2005)): First, marketing decisions in the schedule design problem deter-

mine the schedule of flights the airline operates. Each flight is specified by origin,

destination, departure date, departure time, and duration. Given the set of flights

in a schedule, the solution of the fleet assignment model determines which flight is

operated by which aircraft type. The objective is to maximise profit with respect to

the number of available aircraft. Next, the aircraft routing problem seeks a minimal

cost assignment of available aircraft to the flights. A routing is assigned to each

individual aircraft such that each flight is covered by exactly one routing. The rout-

ings must satisfy maintenance restrictions. In a similar way to the aircraft routing

problem, the crew pairing problem allocates crew to flights in a minimal cost way. A
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set of generic crew pairings is constructed subject to many rules so that each flight

is covered exactly once. The last of the planning problems is crew rostering. Based

on the constructed crew pairings, a line of work is assigned to each individual crew

member.

We consider three of the above problems: schedule design, aircraft routing, and

crew pairing. Instead of constructing a schedule from scratch we only solve a re-

timing problem: An original schedule is given and only small changes of the depar-

ture times of some flights are allowed. The solution of our approach consists of a

set of re-timed flights together with aircraft routings and crew pairings covering all

flights of the given schedule.

Traditionally, the three problems are solved sequentially although the problems

are interdependent (see Barnhart and Cohn (2004)). During operations delays occur

frequently due to late passengers or bad weather, for example. If an incoming flight

is late, the next flight the aircraft is operating will be late because turn around times

are usually very short for efficiency reasons. If the crew change aircraft after the

delayed flight and only minimal ground time is available, the next flight the crew is

operating will also be late. Such a propagation of delay can cause serious disruptions

to the operation of the flight schedule. The total delay over all flights caused by the

initial disruption can be reduced if the crew follow the aircraft as much as possible

and change aircraft only when ground time between flights is much longer than the

minimum. In this sense, in an operationally more robust solution the crew pairings

depend on the given aircraft routings. As a first question it is natural to ask if

it is possible to improve the robustness of the crew pairing solution by permitting

changes to the aircraft routing solution to encourage the aircraft to follow the crew.

Additionally, departure times of the flights are determined a priori in the schedule

design problem. Allowing some flexibility of departure times increases the number

of possible connections between flights for crew and aircraft. Hence, crew may not

be required to change aircraft as many times as for a fixed schedule. If it is still

necessary for crew to change aircraft some additional buffer time may be allocated

for the crew when they change aircraft in order to compensate for delays. The

second question we try to answer is therefore if flexibility in departure time of some

flights can further improve the robustness of the aircraft routing and crew pairing

solutions.

We investigate the two questions above and show first that it is indeed possible

to reduce the cost of the crew pairing solution and simultaneously increase its ro-

bustness by considering crew and aircraft together. Additionally, we show that only

small changes of departure times can increase the robustness of the solutions even

further.

We formulate the schedule re-timing problem, aircraft routing problem, and the

crew pairing problem in one integrated model (similarly to Mercier and Soumis

(2007)). This model yields one optimal solution for the three problems where the

objective function is a weighted sum of cost and some value attached to robustness.

However, the model is very hard to solve. Integration increases the complexity of

the problems which are already NP-hard individually. Decomposition methods are

proposed in the literature to solve the integrated problem but long computation

times are needed to solve the model to optimality.

Instead of solving the integrated model, we propose to solve the original prob-

lems iteratively. We first consider a fixed schedule. We start with a minimal cost
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crew pairing solution without taking aircraft routings into account. In each itera-

tion we solve the individual aircraft routing problem first, taking into account the

current crew pairing solution. Then, given the aircraft routing solution we resolve

the crew pairing problem. We only use the objective functions in both problems

to pass information from the problem solved previously to generate more and more

robust solutions. Hence the constraints are unaltered and the complexity of the two

problems is not increased. We stop the process when the level of robustness can not

be improved any further. This procedure generates a series of feasible solutions for

the integrated model with varying cost and robustness measure. Subsequently, for

each solution we allow an increasing amount of flexibility for the departure times of

some flights to improve robustness. We generate improved re-timed solutions with a

varying number of re-timed flights. This two step approach allows us to separately

evaluate the benefits of the iterative approach and the additional departure time

flexibility.

The airline is not required to associate a cost with robustness or re-timings but

can study the trade-off between cost, robustness and schedule changes and then

choose a solution they prefer to operate.

Applying this approach to various domestic airline schedules we obtain low cost

solutions that are highly robust and only require a small amount of departure time

changes. The solutions obey all rules imposed by the airline and are ready to be

implemented in practice.

References

Barnhart, C., and A.M. Cohn. 2004. “Airline Schedule Planning: Accomplishments

and Opportunities.” Manufacturing & and Sevice Operations Management 6

(1): 3–22.

Klabjan, D. 2005. “Large-scale Models in the Airline Industry.” In Column

Generation, edited by G. Desaulniers, J. Desrosiers, and M.M. Solomon, 163–

196. Kluwer Scientific Publishers.

Mercier, A., and F. Soumis. 2007. “An integrated aircraft routing, crew scheduling

and flight retiming model.” Computers & Operations Research 34:2251–2265.

81



The Train Driver Recovery Problem - a Set

Partitioning Based Model and Solution Method

Natalia J. Rezanova
Informatics and Mathematical Modelling

Technical University of Denmark, Denmark
e-mail: njr@imm.dtu.dk

David M. Ryan
The Department of Engineering Science

The University of Auckland, New Zealand
e-mail: d.ryan@auckland.ac.nz

Extended Abstract to 42nd Annual ORSNZ Conference, 2007

Every railway operator experiences disruptions during the daily operations due
to external influences or internal failures. A Danish railway operator DSB S-tog A/S
is no exception. DSB S-tog A/S operates on an urban train network with at least
6 trains per hour in each direction departing from every station of the network and
up to 30 trains per hour in each direction departing from the Copenhagen central
station. Minor train delays on the network are recovered by re-establishing the
original plan using the slack time built into the timetable or delaying other trains.
Major disruptions in the train schedule are recovered by re-routing or cancelling
trains. A train is re-routed if it is turned back before reaching the end terminal
station or driven through some stations without stopping. A cancellation is applied
either to a single train task or to a whole train line, resulting in cancellations of all
train tasks of a particular line for a certain period of time.

Disruptions in the train timetable affect the train driver schedule. When a train
is delayed, re-routed or cancelled, a driver might be late for the next scheduled train
task of the duty. If the driver is not available in due time for a train departure, the
train task is assigned to another driver. If there is no available driver to cover the
train task, the train is delayed or cancelled, causing a propagation of disruptions in
the schedule. At the present time the re-scheduling process of disrupted train driver
duties is conducted manually. During major disruptions a large number of driver
duties has to be re-scheduled and a recovery solution can be difficult to assess.

An optimization method presented here is developed for operational recovery of
the train driver schedule in a cooperation with DSB S-tog A/S. The train driver
re-scheduling has received a very limited attention by Operations Research practi-
tioners. The crew re-scheduling problem for train driver duties disrupted due to the
maintenance work on train tracks is solved by [1] for the largest passenger railway
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operator in The Netherlands. An integer programming approach to a simultane-
ous train timetable and crew roster recovery problem, tested on the New Zealands
Wellington Metro line, is presented in [4].

For a particular disruption we identify a disruption neighbourhood, which is a
part of the driver schedule characterized by a set of train tasks and a set of train
drivers. The initial disruption neighbourhood is identified by a set of drivers, who’s
duties contain train tasks which are known to be disrupted within a certain recovery

period, a time period within which a recovery solution is aimed to be found. A train
task is disrupted if it is delayed, cancelled, re-routed or uncovered, i.e. assigned to
an absent driver. All train tasks belonging to the initial set of drivers within the
recovery period are included into the initial disruption neighbourhood. The Train
Driver Recovery Problem (TDRP) aims at finding a set of feasible train driver
recovery duties for drivers within the disruption neighbourhood with minimum
modification from the original train driver schedule, such that all train tasks within
the recovery period are covered and the driver duties outside the recovery period
and duties of drivers not included in the disruption neighbourhood are unchanged.

The TDRP is formulated as a set partitioning problem, where variables represent
recovery duties of train drivers. The set of generalized upper-bound train driver

constraints ensure that each train driver is assigned to exactly one recovery duty
in the schedule. The train task constraints have a set partitioning structure and
ensure that each train task in the recovery schedule is covered exactly once. It
is observed in [3] that the linear programming relaxation of the set partitioning
formulation of the crew rostering problem, which has a similar structure to the
TDRP, possesses strong integer properties due to the existence of the generalized
upper-bound crew constraints, which contribute to the perfect structure of the
submatrix, corresponding to each crew member. This observation implies that the
linear programming relaxation of the Train Driver Recovery Problem (TDRP-LP)
also possesses strong integer properties.

The solution method for solving the Train Driver Recovery Problem is based on
solving the TDRP-LP and finding an integer solution with a constraint branching
strategy. Since the cost of the recovery is not determined by a physical cost of
the driver schedule (the drivers are already paid to be at work), but rather by the
fictitious cost which expresses how attractive each recovery duty is, the optimality

of the solution is not as important as the feasibility of the solution. The TDRP-LP
is solved with a column generation method based on a limited subsequence strat-
egy, where recovery duties with negative reduced costs are generated by limiting
the number of tasks (subsequences) a driver can perform after finishing any task in
the duty. Starting with a small number of subsequences, it is gradually increased,
allowing to consider less attractive subsequent tasks for recovery duties. When a
feasible solution to the TDRP-LP is found, we consider the problem solved. If the
initial number of drivers is not enough to cover all train tasks in the initial dis-
ruption neighbourhood, the disruption neighbourhood is expanded in two possible
ways: either the number of drivers in the disruption neighbourhood is increased
by adding available stand-by drivers or the recovery period is extended, including
more train tasks from the involved drivers’ duties. If the problem remains infeasible
due to uncovered train tasks when there are no more available drivers to add to
the disruption neighbourhood, the decision support system sends an infeasibility
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message to the dispatcher specifying which train tasks are uncovered and hence
have to be delayed or cancelled.

If the solution to the TDRP-LP is fractional, a constraint branching strategy
similar to the one described in [2] is applied in order to find an integer solution.
Since every train driver submatrix in the set partitioning formulation of the problem
is perfect, the fractions occur in the TDRP-LP only across train drivers’ blocks of
columns. It is therefore sensible on 1-branches of the Branch & Bound tree to
force one driver r to cover a train task s, which also appears in another driver’s
optimal recovery duty while forbidding other drivers to include s in their recovery
duties. On the 0-branch we forbid the driver r to cover the train task s. A depth-
first search on 1-branches of the Branch & Bound tree is implemented and the
branching procedure is terminated as soon as the first integer solution is found.

We generate test scenarios based on historical data from one day of DSB S-
tog A/S operations in January 2007, when the operations were severely disrupted
due to a broken switch near the central station. Recovery periods between 1 and
3 hours were considered. Test results show that for the test instances involving
between 10 and 40 train drivers and between 20 and 50 train tasks the solutions
are found within 1–3 seconds. For the test instances involving between 40 and 70
drivers and between 50 and 80 train tasks the solutions are found within 20–40
seconds. For the test instances involving between 70 and 90 drivers and between
80 and 120 train tasks the solutions are found within 1–2 minutes. The majority
of all test instances (ca. 98%) produces integer solutions to the linear relaxation of
the TDRP, confirming the strong integer property of the problem formulation.
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Abstract

Arc routing problems, such as the Chinese Postman Problem (CPP), the Rural

Postman Problem (RPP) and their variants, are cousins of classical vehicle routing

problems. For example, the RPP specifies a subset of arcs that are required to be

visited by a single vehicle at minimum total cost. Although RPP is NP-hard, sim-

ple construction and improvement heuristics have proven successful in applications.

The Rural Postman Problem with Rewards (RPP+R) has recently been proposed

by Aráoz, Fernández, and Zoltan (2006), in which a subset of arcs carry a reward

that is collected only if that arc is traversed by the vehicle, and the objective is to

maximize the total reward collected subject to a constraint on the total tour cost.

Rewards provide an explicit mechanism for modelling the tradeoff between difficulty

(cost) of service and benefit (reward) from service. To date, only polyhedral re-

sults have been reported for the RPP+R. In this paper we restrict our study to

the behaviour of heuristics on undirected grid networks. These are easy to visualize

and are appropriate models for the roading networks in urban areas. We estimate

and compare the distribution of performance of local-search based heuristics for the

RPP on random undirected grid network problem instances of the CPP defined by

a single edge-density parameter. Computational experience shows that local-search

based heuristics for RPP behave well enough on CPP, so that it is justifiable that

they are applied to other arc routing problems. Visualisation of grid networks has

provided useful insights into the behaviour of local-search based heuristics.

1 Introduction, Problem Descriptions and Brief Literature

Review

The field of vehicle routing and scheduling is a rich and diverse field, spanning the

modelling of complex real world problems and related fine algorithmic details of

their efficient optimal solution. The aspects that we find most attractive about

this field of study are that the problems are easy to visualise in terms of physical

situations (translated onto the computer screen) and model with graph theoretic

solution structures.
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This paper brings together four ideas: arc routing (the requirement to visit

particular edges rather than particular nodes in a network), undirected grid networks

(easy to visualise and also study as a whole class of problem instances), design of

local-search based heuristics, and the incorporation of rewards.

Idea 1. Arc routing. Arc Routing problems (including Chinese Postman Prob-

lem and Rural Postman Problem and their variants) are well studied in the Opera-

tions Research literature. For a comprehensive surveys, see the two survey articles of

Eiselt, Gendreau, and Laporte (1995a, 1995b), the research collection of Dror (2000),

and the textbook of Evans and Minieka (1992). Consider a graph G = (V, A) with

node set V , arc set A, and a nonnegative cost matrix C = (cij) associated with A,

where the arcs can be undirected, directed or both. The Chinese Postman Problem

(CPP) is to determine a minimum-cost closed walk on all arcs of A. The Rural

Postman Problem (RPP) only requires a subset R ⊆ A of arcs to be traversed. The

major complexity difference is that RPP (both undirected and directed) is NP-hard

(Lenstra and Rinooy Kan (1976)), whereas CPP is efficiently solved by the method

of Edmonds and Johnson (1973) in polynomial time. In an optimal CPP or RPP

solution, no edge is traversed more than twice.

Idea 2. Undirected grid networks. Urban roading networks can be appropri-

ately modelled with grid networks, see, e.g., Frizzell and Giffin (1995). Consider a

regular lattice of n × n equally spaced points, joined with n(n − 1) horizontal and

n(n−1) vertical undirected edges. The mechanism for creating a random grid prob-

lem instance denoted as of type G(n, p) is simply to delete one edge at a time while

ensuring that the resulting set of edges remain connected, until only p 2n(n − 1)

edges remain. Since all values of 0 ≤ p ≤ 1 are admissible, it is therefore possible

for a node to have degree zero, but all nodes of degree ≥ 1 are connected. We also

require that all edges are connected to a central depot node from which the tour

nominally departs. Small examples corresponding to n = 9 and different values of

p are given in Figure 1. Note that small values of p have tree-like structures, many

nodes of degree zero, and most edges are repeated in the optimal CPP tour. In

Section 3.1 we investigate the expected properties of G(n, p) further.

Note that although various collections of test problem instances are available

for the arc routing problems, e.g., Eglese and Li (1992) and the websites http://

www.uv.es/~belengue/carp/ and http://www.iwr.uni-heidelberg.de/groups/

comopt/people/theis/GRPLIB/index.html, there is often insufficient information

(a) G(9, 0.3) (b) G(9, 0.5) (c) G(9, 0.7) (d) G(9, 0.9)

Figure 1: Example grid networks, where bold indicates that the edge would be

traversed twice in an optimal CPP tour.
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available to be able to visualise the networks. By contrast, grid networks are very

easy to visualise, can be varied by a single edge density parameter p, and each node

has degree at most four.

Idea 3. Local search. Given a current solution x, a local search method searches

a local neighbourhood of solutions N (x) that are in some sense close to x. Local

search has been proven successful for vehicle routing problems and other combi-

natorial optimization problems, see, e.g., Aarts and Lenstra (1997) and Toth and

Vigo (2002). The area of research remains very active, e.g., the recent advances in

large-neighbourhood search of Ahuja et al. (2002) are finding numerous successful

applications.

Idea 4. Rewards. Rewards provide an explicit mechanism for modelling the

tradeoff between difficulty (cost) of service and benefit (reward) from service. The

prototypical example goes as follows. A salesman collects a reward in every city

j that he visits and travels between cities i and j at cost cij. The salesman must

determine both which subset of cities to visit and also in which order to visit those

cities, i.e., these are two interdependent decisions. In the Orienteering Problem

(OP), the salesman wishes to maximize the reward value collected without exceed-

ing a prescribed travel cost budget, visiting each city at most once. Tsiligirides

(1984) appears to be the first to consider the combinatorial optimization problem

formulation now known as the OP, although he called it a Generalised TSP. Golden,

Levy, and Vohra (1987) were the first to coin the name Orienteering Problem and

also showed that OP in NP-hard. The recent survey paper of Feillet, Dejax, and

Gendreau (2005) calls the general class of these problems Profitable Tour Problems

(PTPs).

Aráoz, Fernández, and Zoltan (2006) introduced the Privatized Rural Postman

Problem in which each required edge in the Rural Postman Problem has an asso-

ciated reward. The objective is, as in OP, to maximize the reward value collected

without exceeding a prescribed travel cost budget. We prefer to call this the Rural

Postman Problem with Rewards (RPP+R) to emphasise the rewards. To the best

of our knowledge, only polyhedral results have been reported for the RPP+R, i.e.,

no algorithm or computational results have been reported.

Research questions. The goal of this research is to evaluate whether local-search

can be effective for RPP+R. This paper addresses one small step in this project, i.e.,

to evaluate whether local search is sufficiently effective for RPP to conclude that it

is likely to be worth pursuing for RPP+R. We restrict our analysis to undirected

grid networks of the type described above.

Outline of this paper. The remainder of the paper is structured as follows. Sec-

tion 2 designs a local-search based heuristic for RPP. Section 3 designs and conducts

a computational experiment to establish some expected properties of undirected

grid networks and to evaluate how these local-search based heuristics perform on

the CPP. Finally, Section 4 offers some conclusions and recommendations for future

research, including some thoughts on how to introduce rewards into the mix.
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2 Design of Local Search Heuristics for the Rural Postman

Problem

In order to specify a local search heuristic to solve the RPP, we must describe the

data structure used to model a RPP tour, the local operators that can make small

local changes to improve a given RPP tour, a construction heuristic to create an

initial RPP tour, and some improvement logic for how to apply local operators to

find a local-optima.

Data structure. We adopt the data structure of Hertz, Laporte, and Mittaz

(2000) in their tabu search heuristic for the Capacitated Arc Routing Problem

(CARP). Here a RPP tour is a sequence of oriented required edges. The short-

est path between required edges is traversed to determine the tour’s length. The

representation of a rural postman tour in this way is very efficient, especially when

the required edges are sparse. It also ensures the connectivity of the RPP tour.

Local operators. Figure 2 depicts the symbols used to define the local search

operators for RPP in Figure 3. Figure 2(a) represents a required edge (thick), (b)

represents two required edges (thick) joined by a shortest path (thin) between the

given endpoints which consists of zero or more nonrequired or required (deadheaded)

edges, (c) represents a sequence of one or more required edges joined by shortest

paths, i.e., (c) is defined recursively as either (a) or (e), and finally in (d) the square

box represents the required depot node and (d) is defined recursively as either the

depot node alone or (f).

Figure 3 then defines the local operators applied in local-search based heuristics

for the RPP. Here, two-exchange and three-exchange are used to improve

the tour length. These edge exchanges are simply those of Lin and Kernighan

(1973) for TSP modified to ensure that no required edge is broken. Insertion oper-

ators insertion and generalised-insertion are used in tour construction. Here

generalised-insertion inserts an new required edge, together with a local re-

optimisation of the tour. This is modified from Gendreau, Hertz, and Laporte

(1992) which proved very effective for TSP.

Construction heuristics. Algorithm 1 describes a farthest-insertion heuris-

tic for RPP, based upon the TSP heuristic of Rosenkrantz, Stearns, and Lewis (1977).

Here insertion uses the best insertion and generalised-insertion operators. By

changing ‘argmax’ to ‘argmin’ we obtain a cheapest-insertion heuristic. Informal

computational experience suggests that farthest-insertion performs consistently

slightly better than cheapest-insertion and so we have not formally included

cheapest-insertion in our experiments in Section 3. Note also that we have not

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Definition of symbols
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(a) two-exchange

(c) insertion

(d) generalised-insertion

(b) three-exchange

Figure 3: Local search operators for the RPP.

Algorithm 1 function farthest-insertion

τ ← (depot, depot)

while (some required edges remain) do

// Determine best way to insert each remaining required edge

for each remaining required edge e do

c(e) ← minimal insertion cost of e

end

// Farthest insertion

Insert edge e∗ ← argmax{c(e)}
end

return(τ)

end
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implemented the construction heuristic of Frederickson (1979) (which is based on

Christofides’ heuristic for the TSP).

Improvement logic. The improvement logic used for RPP local-search is

simply to apply the best-improving two-exchange or three-exchange until no

further improvement is possible. It is important to note, but slightly more difficult

to prove, that together two-exchange and three-exchange are sufficient to

ensure that no edge is traversed more than twice in an RPP tour.

3 Computational Experiment on the Chinese Postman Prob-

lem

Edmonds and Johnson (1973) provide a polynomial time algorithm to solve CPP.

The critical step is solving a minimum-weight matching problem on shortest path

distances between odd-degree vertices of the network in order to determine which

edges should be traversed twice in order to create an Euler tour; see Evans and

Minieka (1992) for a clear explanation of the algorithm with examples.

3.1 Expected Properties of Grid Networks

Since the Edmonds and Johnson (1973) algorithm involves matching odd-degree

vertices, we estimate the expected degrees of nodes in grid networks of different

sizes and densities. G(n, 1) has 4 nodes of degree 2 (the four corners), (n−2)2 nodes

of degree 4 (the internal nodes) and 4(n−2) nodes of degree 3 (the sides), adding to

a total of n2 nodes. Simulations provide additional results as shown in Table 1. As

noted earlier, it is possible to have nodes of degree zero. Table 1 shows a trend in

the number of nodes of degree 2 (these are in a sense redundant nodes in CPP). The

interesting property is the expected number of odd-degree nodes in G(n, p) which

peaks around p = 0.7, as summarised in Table 2. This indicates that the difficulty

of solving CPP on a grid network of fixed n is roughly the same for 0.6 ≤ p ≤ 0.9.

Table 1: Average number of nodes of degree (0, 1, 2, 3, 4) on grid types G(n, p) for

1000 problem instances of each (simulation).
p n = 7 n = 9 n = 11

0.1 (40.1, 2.4, 6.1, 0.4, 0.0) (66.0, 2.9,11.3, 0.8, 0.0) (98.0, 3.3,18.4, 1.3, 0.0)

0.2 (30.9, 3.8,12.5, 1.7, 0.1) (51.0, 5.0,22.2, 2.7, 0.1) (76.1, 6.4,34.3, 4.1, 0.1)

0.3 (23.0, 5.7,16.8, 3.3, 0.2) (37.0, 8.7,29.0, 5.9, 0.4) (54.0,12.5,44.5, 9.4, 0.6)

0.4 (14.0, 8.9,19.6, 5.9, 0.6) (22.2,14.1,33.4,10.3, 1.0) (32.2,21.1,49.9,16.2, 1.6)

0.5 ( 6.9,11.3,20.8, 8.7, 1.3) (10.0,18.4,34.5,15.6, 2.5) (13.7,27.3,51.2,24.7, 4.1)

0.6 ( 2.9,10.4,20.4,12.6, 2.7) ( 3.9,16.0,32.7,22.8, 5.6) ( 5.2,22.7,47.6,36.0, 9.5)

0.7 ( 1.1, 6.9,17.9,17.3, 5.8) ( 1.4,10.1,27.9,30.1,11.5) ( 1.9,14.0,40.1,46.1,18.9)

0.8 ( 0.4, 3.7,14.4,20.6, 9.9) ( 0.5, 5.1,21.2,34.4,19.8) ( 0.5, 6.6,29.1,51.9,32.9)

0.9 ( 0.0, 1.2, 9.0,22.2,16.6) ( 0.1, 1.5,12.1,34.9,32.4) ( 0.1, 1.9,15.9,50.2,52.9)

1.0 ( 0.0, 0.0, 4.0,20.0,25.0) ( 0.0, 0.0, 4.0,28.0,49.0) ( 0.0, 0.0, 4.0,36.0,81.0)

49 nodes 81 nodes 121 nodes
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Table 2: Summary of the expected number of odd/even degree nodes and the actual

number of edges (in brackets).

p n = 7 n = 9 n = 11

0.1 2.8/ 6.1 (8) 3.7/11.3 (14) 4.6/18.4 (22)

0.2 5.5/12.6 (17) 7.7/22.3 (29) 10.5/34.4 (44)

0.3 9.0/17.0 (25) 14.6/29.4 (43) 21.9/45.1 (66)

0.4 14.8/20.2 (34) 24.4/34.4 (58) 37.3/51.5 (88)

0.5 20.0/22.1 (42) 34.0/37.0 (72) 52.0/55.3 (110)

0.6 23.0/23.1 (50) 38.8/38.3 (86) 58.7/57.1 (132)

0.7 24.2/23.7 (59) 40.2/39.4 (101) 60.1/59.0 (154)

0.8 24.3/24.3 (67) 39.5/41.0 (115) 58.5/62.0 (176)

0.9 23.4/25.6 (76) 36.4/44.5 (130) 52.1/68.8 (198)

1 20.0/29.0 (84) 28.0/53.0 (144) 36.0/85.0 (220)

49 nodes 81 nodes 121 nodes

3.2 Evaluation of Farthest Insertion and Local Search

For the main computational experiment, we consider only the Chinese Postman

Problem on G(n, p) with unit edge weights, i.e., all edges are required to be visited

at least once. Note that in an optimal CPP solution, no edge is traversed more

than twice, and hence the objective is to minimize the number of edges traversed a

second time (called “deadheading”). The CPP is the hardest RPP on which to test

heuristic methods that are designed for RPP, since CPP is the most dense RPP.

The critical step of the Edmonds and Johnson (1973) algorithm is solving a

minimum-weight matching problem on shortest path distances between odd-degree

vertices. We denote this as the optimal-matching weight. Now consider a RPP

tour found by farthest-insertion or local-search. Subtracting the number of

required edges from the total length travelled gives a weight directly comparable to

the optimal-matching weight. In other words, computational results report only

to total deadheaded weight.

Experimental Results. Figure 4 presents the overall computational results con-

ducted on undirected grid networks of size n = 9 with 0.5 ≤ p ≤ 0.9. For values

of p < 0.5 the networks are very close to trees and hence almost all edges are

traversed twice. In Figure 4, the left, middle and right sets of five boxplots corre-

spond to optimal-matching, farthest-insertion and local-search respec-

tively. The optimal-matching weight decreases with p. This trend also occurs

with local-search but not with farthest-insertion. For p = 0.5, local-

search does not improve upon farthest-insertion, but optimal-matching is

significantly better (due to judicious use of cycles in the almost acyclic network).

For p = 0.6, local-search slightly improves farthest-insertion, and performs

similarly to optimal-matching. For p = 0.7, there is good improvement of local-

search over farthest-insertion and comparable to optimal-matching. For

p ∈ {0.8, 0.9}, there is substantial improvement of local-search over farthest-

insertion but falling well behind optimal-matching.

In conclusion, as p increases, local-search makes significant improvements

upon farthest-insertion. Also, local-search performs comparably to optimal-
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Figure 4: Boxplots summarising the distribution of performance on G(9, p), i.e., a

9×9 grid, for different values of p, over 200 problem instances in each case. The left

block of five boxplots show the distribution of the optimal-matching weight, the

middle block show farthest-insertion, and the right block show local-search.

matching when the grid network is not too sparse and not too dense.

Figure 5 looks more closely at the results for p = 0.7 and p = 0.9. Note that

the plot scales are the same. Here p = 0.7 is more spread out than p = 0.9, i.e, the

range of performance for all methods are larger. Also, for p = 0.9 the region of circles

is very distinct from the region of squares, indicating that local-search is much

closer in performance to optimal-matching than farthest-insertion, and often

performing well. For p = 0.7 we see that local-search performs consistently well

compared to optimal-matching, while still improving upon farthest-insertion

(which occasionally does unexpectedly well).

A few observations on verification and insights from visualisation of solutions

is warranted. Visualisation (and animation) has proven valuable in checking for

traversal more than twice, checking the end cases of edge exchanges, and in verifying

that no edge is traversed more than twice.

4 Conclusions and Recommendations for Future Research

Computational experience shows that local search based heuristics for RPP behave

well enough on CPP problem instances that are not too sparse or too dense. There-

fore, it is justifiable that they are applied to other arc routing problems. Visualisa-

tion of grid networks has provided useful insights into the behaviour of local-search
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(a) G(9, 0.7) (b) G(9, 0.9)

Figure 5: Scatter plots (area of symbol represents the frequency) of performance

of optimal-matching vs local-search (circles) and farthest-insertion vs

local-search (squares) on 200 problem instances of (a) G(9, 0.7) and (b) G(9, 0.9).

based heuristics.

Future work will focus on the design of local search heuristics for the RPP+R, be-

ginning by considering only unit rewards. We will design swap operators together

with local re-optimisation of the tour, similar to generalised-insertion. The

design of new improvement logic will be fundamental, including how to take advan-

tage of reward clusters. New benchmark problem sets will be required to test and

compare the new methods. Additional research questions centre on how to usefully

include infeasible tour segments during local search. A major challenge is the visu-

alisation of the tradeoff between reward and distance for different densities of edges

and rewards and how these visualisations assist in refining the improvement logic.

Integrating rewards into CARP and incorporating stochastic elements into the RRP

are two challenging directions for further study. We consider that the RPP+R is a

computationally challenging combinatorial optimisation problem worthy of further

research.
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Abstract

In this work, we are concerned with characterizing a set of conditions to ensure

the existence of an uncongested Cournot equilibrium over an electricity network.

Since the deregulation of electricity markets began, many models have been created

which consider the electricity market as a game. However, in Cournot models with

transmission it is possible that a pure-strategy Cournot equilibrium does not exist.

To address this issue, models have been created which limit the rationality of the

players or change the sequencing of the game (Yao, Oren, and Adler 2006). These

models are able to guarantee the existence of a pure-strategy equilibrium, but, due

to their assumptions, could be considered to be less realistic representations of the

underlying game.

The properties of the electricity market that can affect the existence of pure-

strategy equilibria are the capacities on the transmission lines. Limited line capac-

ities can lead to some parts of the network becoming isolated (all lines into the

sub-network are at capacity); without the threat of competition, generators located

at those nodes can act in a less competitive fashion by withholding electricity, this

will lead to higher prices (it can be shown that the social welfare will be worse in

this situation).

In this, we build on the work of Borenstein et al. (Borenstein, Bushnell, and Stoft

2000), who considered the effect of the line capacity in a two-node network, to deal

with more network configurations. The Cournot model employed consists of strategic

generators and linear fringes over a pool market. We formulate this model as a game,

wherein the strategic generators are Cournot players (their decision is the quantity

of electricity that they wish to generate), and they have full-rationality. To find the

Nash equilibrium, we formulate this problem as a bi-level game, whereby the market

dispatch problem is embedded within each generator’s profit maximization problem.

The Nash-Cournot equilibium, can be described as a solution to an equilibrium

problem with equilibrium constraints (EPEC) (Ralph and Smeers 2006). However,

the EPEC may have many solutions that are not equilibria for the Cournot game,

this problem is therefore difficult to solve.

For situations in which the transmission network is radial, we derive conditions on

the line capacities which are necessary and sufficient to ensure that the unconstrained

Cournot equilibrium exists. These conditions form a convex polyhedral set, which
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means they can be easily be embedded as constraints into an optimization problem,

ensuring competitive play, while optimizing the use of resources.

We extend this work to examine the impact of two other network properties on

this set. The first of these is the effect that losses have on the existence of the

uncongested equilibrium; we show that under the assumption of quadratic losses,

the presence of a large loss coefficient does not necessarily preclude the existence of

an uncongested equilibrium. The second line property is the reactance; this governs

the flow of electricity around a loop. Here, we show that when the transmission

network contains a loop, we are no longer guaranteed that the conditions ensuring

the existence of the uncongested Cournot equilibrium are convex.
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Abstract

Fault-response companies receive calls from customers with service problems,

and must respond to these faults by sending a repairman to the fault within a

certain time frame. The problem facing a dispatcher in a fault response company

is to determine which fault each repairman should repair next. To make the best

decision, the dispatcher must consider a plan for the day or week ahead, determining

good routes for each repairman.

The problem is modelled as a multiple travelling salesman problem with time

windows. The problem is solved initially using estimated repair times. The problem

is then resolved when new information arrives. Either a new fault must be repaired,

or a fault repair time is found to be different from the estimate.

It was found that the model performed well where the locations of all the faults

were known at the start of the day, with the repair times estimated. Problems

where new faults arrive during the day can lead to the repairmen doubling back to

repair faults in areas they have just visited.
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Airline Revenue Management and Game over Itinerary  
 
!"#$%&'$  
 
In this article we model a monopolistic market where two airlines have 

differentiated products and they compete on market shares at the same time 

as they optimize revenue by taking an appropriate inventory control policy. 

We show that over a set of possible itineraries there exists only one possible 

combination of itineraries that both airlines are optimized given the other 

airline pricing and network strategy and it is Nash equilibrium over network 

of flights. 

 

Key words: Competitive pricing, Revenue management, Game theory, 

Perishable asset, Airline network structure.  
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Abstract

Minimum cost network flow problems have practical applications in various areas

such as distribution systems planning, medical diagnosis, transportation, or capacity

planning, to mention just a few. As with most real-world problems, there is more

than one objective to be considered and the objectives are usually conflicting. We

solve the biobjective integer minimum cost flow (BIMCF) problem, which is NP-

hard and intractable. There currently is no algorithm in the literature to compute

the (complete) set of efficient solutions for BIMCF problems. We propose to solve

BIMCF with a two phase algorithm. In phase 1 supported extreme solutions are

computed with a parametric network simplex algorithm. In phase 2, we transform

the BIMCF problem into several single-objective weighted sum problems and solve

them with a k best flow algorithm to obtain the remaining solutions. The proposed

algorithm is tested on random networks.

1 Introduction

Single-objective integer minimum cost flow problems have received a lot of attention

in the literature as they have various applications (e.g. Ahuja, Magnati, and Orlin

(1993)). In most real-world optimisation problems, there is usually more than one

objective that has to be taken into account, thus leading to multiobjective integer

minimum cost flow problems (MIMCF). We restrict our considerations to the biob-

jective case (BIMCF). The problem of finding all efficient solutions of BIMCF is

intractable, Ruhe (1988) presents an example problem with exponentially many so-

lutions. BIMCF is an NP-hard problem, as the biobjective shortest path problem,

a special case of BIMCF, was shown to be NP-hard by Serafini (1986).

We propose to solve the BIMCF problem using a two phase approach. In the

first phase, extreme supported efficient solutions (those that define extreme points

of the convex hull of feasible solution vectors in objective space) are computed with

a simplex-based algorithm. Other efficient solutions are computed in the second

phase using a ranking algorithm on restricted areas of the objective space. We test

our algorithm on different problem instances generated with the well known network

generator NETGEN.

99



2 Biobjective Integer Minimum Cost Flow Problem

Let G = (N, A) be a directed network with a set of nodes N = {1, . . . , n} and a

set of arcs A ⊆ N × N with a = (i, j) ∈ A and |A| = m. Two non-negative costs

ca = (c1
a, c

2
a) ∈ N × N are associated with each arc a ∈ A. Furthermore, there is a

non-negative integer lower bound capacity la and an upper bound capacity ua with

la ≦ ua on every arc a. An integer numerical value bi, the balance, is associated

with each node. The value bi > 0, bi < 0, or bi = 0 indicates that, at node i, there

exists a supply of flow, a demand of flow, or neither of the two (i is then called

transshipment node), respectively. The BIMCF problem is defined by the following

mathematical programme:

min z(x) =

{

z1(x) =
∑

a∈A c1
axa

z2(x) =
∑

a∈A c2
axa

(1)

s.t.
∑

{a:a=(i,j)∈A}

xa −
∑

{a:a=(j,i)∈A}

xa = bi ∀i ∈ N (2)

la ≦ xa ≦ ua for all a ∈ A (3)

xa integer for all a ∈ A. (4)

Here x is the vector of flow on the arcs, constraint (2) represents flow conservation at

the different nodes, and we assume that
∑

i∈N bi = 0. The feasible set X is described

by constraints (2) – (4). Its image under the objective function is Z := z(X).

Without loss of generality we assume la = 0 in the following.

In the remainder of this paper we use the following orders on R
2:

y1 ≦ y2 ⇔ y1
k ≦ y2

k k = 1, 2 and

y1 ≤ y2 ⇔ y1
k ≦ y2

k k = 1, 2; y1 (= y2.

Definition 1 A feasible solution x̂ ∈ X is called efficient if there does not exist any

x′ ∈ X with (z1(x
′), z2(x

′)) ≤ (z1(x̂), z2(x̂)). The image z(x̂) = (z1(x̂), z2(x̂)) of x̂ is

called non-dominated. Let XE denote the set of all efficient solutions and and let

ZN denote the set of all non-dominated points. We distinguish two different types

of efficient solutions.

Supported efficient solutions are those efficient solutions that can be obtained as

optimal solutions to a (single objective) weighted sum problem

min
x∈X

cλ(x) = λ1z1(x) + λ2z2(x) (5)

for some λ1 > 0, λ2 > 0. The set of all supported efficient solutions is denoted by

XSE, its non-dominated image ZSN . The supported non-dominated points lie on the

boundary of the convex hull conv(Z) of the feasible set in objective space.

Supported efficient solutions which define an extreme point of conv(Z) are called

extreme supported efficient solutions.

The remaining efficient solutions in XNE := XE\XSE are called non-supported

efficient solutions. They cannot be obtained as solutions of a weighted sum prob-

lem as their image lies in the interior of conv(Z). The set of non-supported non-

dominated points is denoted by ZNN .
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The two objective functions z1 and z2 do generally not attain their individual

optima for the same values of x̂. We assume in the following that there exists no x̂

such that x̂ ∈ argmin{z1} and x̂ ∈ argmin{z2} for a problem of the form (1) - (4).

Definition 2 Two feasible solutions x and x′ are called equivalent if z(x) = z(x′).

A complete set XE is a set of efficient solutions such that all x ∈ X\XE are either

dominated or equivalent to at least one x ∈ XE.

The presented solution approach computes a complete set XE. Another notion

of optimality that is used in the context of biobjective optimisation is lexicographic

minimisation.

Definition 3 Let k ∈ {1, 2} and l ∈ {1, 2}\{k}. Then z(x̂) ≦lex(k,l) z(x′) if either

zk(x̂) < zk(x
′) or both zk(x̂) = zk(x

′) and zl(x̂) ≦ zl(x
′). We call x̂ a lex(k, l)-

best solution if z(x̂) ≦lex(k,l) z(x) for all x ∈ X. Let xlex(k,l) denote a lex(k, l)-best

solution.

3 Literature

An excellent and very recent review on multiobjective minimum cost flow problems

is given by Hamacher, Pedersen, and Ruzika (2007). We will therefore only briefly

mention relevant literature. To our knowledge, there is no published work on the

MIMCF, so the following is restricted to BIMCF. All exact solution approaches

to find a (complete) set of efficient solutions for BIMCF, i.e. supported and non-

supported solutions, consist of two phases, also known as the two phase method. In

the first phase a complete set of supported efficient solutions, or at least the extreme

ones, is computed. In the second phase all remaining solutions are computed.

In case all capacities, supplies, and demands are integer, which we assume in this

paper, any approach to solve the biobjective continuous minimum cost flow problem

can be used in phase 1 of the BIMCF to find a complete set of extreme supported

solutions, e.g. Lee and Pulat (1991), Pulat, Huarng, and Lee (1992), Sedeño-Noda

and González-Mart́ın (2000), Sedeño-Noda and González-Mart́ın (2003). For the

continuous problem it is sufficient to generate all extreme supported solutions. The

algorithms presented by Lee and Pulat (1991), Pulat, Huarng, and Lee (1992) may

generate some non-extreme supported solutions, whereas the algorithms by Sedeño-

Noda and González-Mart́ın (2000) Sedeño-Noda and González-Mart́ın (2003) gen-

erate extreme supported solutions only.

Lee and Pulat (1991) remark that their procedure can be extended to generate

all integer efficient solutions with image on the edges of conv(Z), i.e. all supported

solutions. Every efficient solution found by their algorithm corresponds to a basic

tree and two solutions are called adjacent if the two corresponding trees differ in only

two arcs. Whenever the flow changes by δ when moving from one efficient solution

to an adjacent one, they propose to increase the flow stepwise by 1, 2, . . . ,δ − 1

to obtain all intermediate solutions and claim to obtain all supported solutions this

way. This is incorrect, as not all non-extreme supported solutions can be obtained as

intermediate solutions of two adjacent basic efficient solutions, an example is given

by Eusébio and Figueira (2006).

Several papers are dedicated to the computation of non-supported efficient solu-

tions, assuming all non-dominated extreme points are known. Lee and Pulat (1993)
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perform an explicit search of the solution space, by using intermediate solutions

between adjacent basic solutions (which is not sufficient, see remark above) and

modifying upper and lower bounds of arcs. They assume non-degeneracy of the

problem. Huarng, Pulat, and A. (1992) extend this algorithm to allow degeneracy

in the problems.

Sedeño-Noda and González-Mart́ın (2001) argue that these two papers are incor-

rect and present an approach that is based on the basic tree structure of solutions.

Having found a complete set of extreme supported solutions in phase 1, the algo-

rithm by Sedeño-Noda and González-Mart́ın (2001) moves from one efficient solution

to adjacent solutions, in order to identify efficient ones among them. Przybylski,

Gandibleux, and Ehrgott (2006) give an example of a network where one efficient

solution is not adjacent to any of the other efficient solutions, hence showing that

Sedeño-Noda and González-Mart́ın (2001) can not generate a complete efficient set.

Figueira (2002) present an approach where ε-constraint problems are repeatedly

solved via branch-and-bound to obtain non-supported solutions.

In her master’s thesis, do Castelo Batista Gouveia (2002) uses a k best flow

algorithm to enumerate all solutions of biobjective network flow problems, including

of course all efficient solutions. She analyses the number of feasible flows, of efficient

solutions, and of non-dominated points in the problem.

In the following, we summarise two recent technical reports that were not in-

cluded in Hamacher, Pedersen, and Ruzika (2007). Eusébio and Figueira (2006) give

examples of networks, where for a supported extreme and supported non-extreme

non-dominated point, basic and non-basic efficient solutions exist. It is known that

there is always a basic solution for every extreme non-dominated point, but the

authors show that there may be other non-basic efficient solutions that lead to the

same point, so that it may be impossible to obtain all efficient solutions when using

a simplex-based method. The authors also give a network in which supported solu-

tions exist that can not be obtained as intermediate solutions between two extreme

supported solutions.

Eusébio and Figueira (2007) illustrate and prove that supported solutions are

indeed connected via chains of zero-cost cycles in the incremental graph constructed

from basic feasible solutions corresponding to extreme supported solutions. They

use this relationship to obtain all supported solutions to a BIMCF problem.

The same result can be obtained by considering a weighted sum objective (5) for

which two neighbouring extreme supported solutions are optimal. The suppported

points on the edge of conv(Z) connecting the two extreme non-dominated points

can be obtained by applying the k best flow algorithm by Hamacher (1995), which

is also based on cycles in the incremental graph. We explain how to apply the k

best flow algorithm in Section 4.2.

4 A Two Phase Algorithm to Solve BIMCF

We solve the BIMCF problem with the two phase method. A formulation of the

two phase method for general multiobjective combinatorial optimisation problems

can be found in Ulungu and Teghem (1995).

The two phase method is based on computing supported and non-supported

non-dominated points separately. In phase 1 extreme supported efficient solutions

are computed, possibly taking advantage of their property of being obtainable as
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Figure 1: Supported non-dominated

points.
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Figure 2: All non-dominated points.

solutions to the weighted sum problem (5), for an illustration see Figure 1. In phase

2 the remaining supported and non-supported efficient solutions are computed with

an enumerative approach, as there is no theoretical characterisation for their efficient

calculation. The search space in phase 2 can be restricted to triangles given by two

consecutive supported non-dominated points as indicated in Figure 2. It is expected

that the search space in phase 2 is highly restricted due to information obtained in

phase 1 so that the associated problems can be solved quickly.

4.1 Phase 1 – Parametric Simplex

In phase 1 of the two phase method, we compute a complete set of extreme sup-

ported solutions of the problem. As mentioned above, any solution method to solve

the biobjective continuous minimum cost flow problem can be used here. We use a

parametric simplex method by Sedeño-Noda and González-Mart́ın (2000). Initially,

one of the two lexicographically optimal solutions, e.g. the lex(1, 2)-best solution, is

obtained with a single-objective network simplex algorithm with accordingly modi-

fied objective. From the initial solution, a network simplex algorithm is employed,

always choosing a basis entering arcs with the least ratio of improvement of z2 and

worsening of z1. If there is more than one arc with minimal ratio, one of them is

chosen as entering arc, and the others are saved in a list of candidates. After the

arc entered the basis, the reduced costs of the remaining arcs in the candidate list

are reevaluated. As long as there are remaining candidate arcs in the list violating

optimality for the second objective, one of them is introduced into the basis, then

the reduced costs of the remaining arcs are reevaluated until there is no more can-

didate arc in the list or all remaining candidate arcs are optimal with respect to the

second objective. Now, an extreme supported solution is obtained and a new list of

candidate arcs with minimal ratio is computed. The procedure generates extreme

supported solutions moving in a left-to-right fashion. The parametric simplex al-

gorithm finishes when no candidate arcs to enter the basis can be found, i.e. the

lex(2, 1)-best solution is obtained.

4.2 Phase 2 – Ranking k Best Flows

In phase 2, we compute the remaining solutions (supported non-extreme and non-

supported solutions). The objective vectors of those solutions can only be situated

in the triangle defined by two consecutive extreme supported non-dominated points
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as indicated in Figure 2. Let z1, . . . , zs, where zi = (z1(x
i), z2(x

i)) and zi are sorted

by increasing z1, be the extreme supported points obtained in phase 1. For each pair

of neighbouring extreme supported points zi and zi+1, we define weighting factors

λ1 = z1(x
i+1) − z1(x

i) and λ2 = z2(x
i) − z2(x

i+1). (6)

Using λ1 and λ2 in (5), we obtain a single-objective flow problem which has optimal

solutions zi, zi+1 (of course all supported solutions between zi and zi+1 are optimal

as well). Applying a k best flow algorithm by Hamacher (1995) to problem (5), we

can generate feasible network flows in order of their cost. The k best flow algorithm

applied to the single-objective problem with objective cλ(x) = λ1z1(x)+λ2z2(x) will

generate the following solutions:

x1, x2, x3, . . . , xk with cλ(x
1) ≦ cλ(x

2) ≦ cλ(x
3) ≦ . . . ≦ cλ(x

k).

When applying the k best flow algorithm in phase 2, flows are computed in order

of their cost and those flows that are within the current triangle and not dominated

by any other flow in the triangle are saved. Instead of specifying k a priori, the

process continues until it can be guaranteed that all non-dominated points (and

their efficient flows) have been found.

We call zi
N = (z1(x

i+1), z2(x
i)) the local nadir point of the current triangle. The

“worst” solution we are interested in, is the one that is one unit of cost better

than zi
N in each objective. Its weighted objective value is an upper bound to the

weighted sum of the two costs of any efficient feasible flow in the current triangle.

Thus, initially, we enumerate k best flows x while

λ1z1(x) + λ2z2(x) ≦ uλ with uλ = λ1(z1(x
i+1) − 1) + λ2(z2(x

i) − 1). (7)

Whenever an efficient solution with cost vector within the triangle is found, it is

saved and the upper bound can be improved, as the new point dominates parts of

the triangle. For a detailed description of how the upper bound is updated, please

refer to Przybylski, Gandibleux, and Ehrgott (2008) or Raith and Ehrgott (2007).

5 Numerical Results

We investigate the performance of our solution method with networks generated by

NETGEN (Klingman, Napier, and Stutz 1974), which is slightly modified to include

a second objective function. We vary parameters as in Table 1. We generate 30

instances for each set of parameters. We generate problems N01-N12 with varying

sum of supply (
∑

i∈N :bi>0 bi) and problems F01-F12 with fixed total sum of supply,

as we observe that increasing the sum of supply with the network size significantly

complicates the problem. All NETGEN instances are listed in Table 1.

5.1 Numerical Results

All numerical tests are performed on a Linux (Ubuntu 7.04) computer with 2.80GHz

Intel Pentium D processor and 1GB RAM. Run-time is measured with a precision

of 0.01 seconds. We make the following observations:

When fixing the number of nodes n in a network but increasing the number of

arcs m the number of efficient solutions increases, this is illustrated by instances

N01-N12 and F01-F12.
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Table 1: Test Instances: NETGEN
transhipment transshipment

Name n m sources sinks
P

i∈N :bi>0
bi sources sinks

N01 / F01 20 60 9 7 90 / 100 4 3
N02 / F02 20 80 9 7 90 / 100 4 3
N03 / F03 20 100 9 7 90 / 100 4 3
N04 / F04 40 120 18 14 180 / 100 9 7
N05 / F05 40 160 18 14 180 / 100 9 7
N06 / F06 40 200 18 14 180 / 100 9 7
N07 / F07 60 180 27 21 270 / 100 14 10
N08 / F08 60 240 27 21 270 / 100 14 10
N09 / F09 60 300 27 21 270 / 100 14 10
N10 / F10 80 240 35 38 350 / 100 17 14
N11 / F11 80 320 35 38 350 / 100 17 14
N12 / F12 80 400 35 38 350 / 100 17 14

Table 2: Results for problems N01 – N12, F01 – F12, and G01 – G12
|ZN | |ZSN |/|ZNN | time

Name average min max average average min max

N01 168.13 15 392 0.28 0.40 0.01 1.45
N02 271.13 66 852 0.22 0.76 0.09 3.17
N03 375.43 126 702 0.18 1.40 0.27 3.78
N04 455.10 137 879 0.15 7.09 1.67 26.36
N05 660.63 252 1801 0.14 11.84 3.16 36.95
N06 948.30 266 2280 0.12 22.58 5.05 74.91
N07 867.80 410 1399 0.11 42.21 11.48 94.32
N08 1510.37 531 2834 0.09 90.88 27.11 245.20
N09 1553.47 808 2448 0.09 112.62 32.77 238.82
N10 1138.77 552 1901 0.10 125.42 46.44 372.95
N11 2036.20 989 4109 0.08 289.05 69.97 559.34
N12 2480.70 1287 3921 0.07 397.94 138.38 813.76

F01 181.13 24 491 0.27 0.52 0.04 2.81
F02 260.53 15 685 0.24 0.99 0.02 4.58
F03 353.77 158 788 0.20 1.54 0.28 6.41
F04 213.87 65 380 0.20 2.44 0.58 5.58
F05 354.10 144 701 0.15 5.19 1.86 11.77
F06 478.87 176 714 0.13 9.20 2.53 33.65
F07 203.97 48 410 0.16 7.17 0.87 22.40
F08 343.23 165 860 0.14 13.48 5.31 41.27
F09 454.17 230 950 0.12 21.35 8.18 47.9
F10 146.43 72 277 0.18 8.80 2.75 17.27
F11 277.90 131 680 0.15 19.64 8.38 54.04
F12 414.50 234 693 0.12 34.03 12.57 66.47

For all presented instances, we can observe that the more efficient solutions there

are in a problem, the longer the run-time of the algorithm. Also, despite the instances

being fairly small, they have a lot of solutions.

For problem type F10, the number of efficient solutions is lower, on average, than

that of problems F01, F04, and F07 although they all have the same ratio n/m. This

happens, because the value of
∑

i∈N :bi>0 bi is fixed, in problem F10 there are only

100 units of flow shipped through the network consisting of 80 nodes.

The sum of supply significantly increases the number of efficient solutions, which

can be seen by comparing the results for problems F01-F12 with the corresponding

results of problems N01-N12. It is, however, more realistic to increase
∑

i∈N :bi>0 bi

while increasing the network size.

|ZSN |/|ZNN |, the ratio of supported and non-supported non-dominated points,

is decreasing when the total number of solutions is increasing for NETGEN instances,

on average. In most NETGEN instances, less than 20% of all solutions are supported.

Thus, the majority of solutions is non-supported. In Figures 3 and 4, the non-

dominated points of one instance of each of the classes F01, N01 are shown. This
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Figure 3: All non-dominated points of

one instance of class F01.
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Figure 4: All non-dominated points of

one instance of class N01.

illustrates that most non-supported points are in fact very close to the boundary of

conv(Z). The given figures are just two examples, but we observe a similar behaviour

in most of the problem instances. By obtaining only the supported solutions of a

problem, a fairly good approximation of the set of efficient solutions can be obtained.

6 Conclusion

The presented two phase algorithm works well to solve BIMCF problem, but the

problems solved within reasonable run-time are fairly small. It is therefore worth

investigating how to increase the performance of the presented algorithm to make

it possible to solve bigger problems. Future research could address the extension of

the the two phase algorithm for BIMCF to the MIMCF problem with more than

two objectives. This can be done along the lines of Przybylski, Gandibleux, and

Ehrgott (2007), where a two phase method for multiobjective integer programming

is presented together with an example of the application to the assignment problem

with three objectives.
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LGE 2007

John Paynter

Abstract

The triennial local government elections (LGE) are arguably the largest logistics
exercise in the country. 73 Territorial Authorites (TA) run elections for their mayor,
Councillors in 283 wards, members in 144 community boards and subdivisions,
members for 18 Regional Councils in 63 constituencies, 21 District Health Boards
and 20 Licensing Trusts (in 42 wards). Additionally there were 10 special issues
such as Maori Representation Polls, Fluoride Referenda that are not in the Electoral
Enrolment Centre lists. In all there are 466 versions of the base stock sent to
electors. In order to cut costs non-resident ratepayers are sent ballot papers based
on the same base stock but with the issues in which they are not entitled to vote
voided. These subsidiary rolls increase the number of combination to be produced
to 1371 (but some may not be needed as no non-Resident Ratepayer is present for
that instance - the final figure was 1130). In all an estimated 2.95 million individual
voting packs will be sent out at the end of September. With tight deadlines, the need
to produce and pack the ballot papers in different locations being able to predict
combinations, stock numbers and timing is crucial. In addition there is a need for
special votes to be considered. Both ordinary and special votes must reconcile to
the rolls in the scrutiny process and positioning and counting information be sent
to the different scanning providers.
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Abstract

In this study, a bio-economic model of a fishery under continuous harvesting is in-

vestigated. The population is assumed to consist of a single species of fish, and the

growth rate is assumed to be density-dependent only. The optimal harvesting strat-

egy is assumed to maximize the expected net present value of total profit earned

by the harvester. The aim is to numerically analyze the sensitivity of the present

value of total profit with respect to different combinations of the catchability and

cost parameters. The effect of high and low variance components in the price and

the growth rate dynamics is studied and the conclusions about the deterministic and

the stochastic cases are drawn.

1 Introduction

Harvesting of fish is an ecological as well as an economic issue. Considerable re-

search has gone into optimal harvesting policies when the resource stock follows

deterministic growth (Clark 1990). However, varying environmental and biological

conditions cause random fluctuations which make the population growth stochastic.

In many models, the associated cost structure assumes the price to be either fixed

or a prescribed function which can be oversimplified. These issues led to research in

the area of stochastic growth and price dynamics.

The optimal rate of extraction, when the resource stock follows stochastic growth

and the output price is either fixed or a prescribed function, has been studied by a

large body of literature (Reed 1974; Gleit 1978; Pindyck 1984). The effect of random

fluctuations in price and population growth has also been investigated (Hanson and

Ryan 1998). But, in all the aforementioned papers, there is no emphasis on the

conservation of fish population.

In order to overcome this problem and to prevent the fish from becoming extinct,

we introduce a population barrier and the fish stock is not allowed to fall below that

level throughout harvesting.
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2 Model formulation

The deterministic Schaefer model (Schaefer 1957) is extended to its stochastic ver-

sion. In the stochastic case, the system experiences continuous disturbance in the

population growth and the price. The growth dynamics of the resource population

is assumed to follow an Itô-stochastic differential equation

dx(τ) =

[{

rx(τ)

(

1 −
x(τ)

K

)}

− qE(τ)x(τ)

]

dτ + σ1(τ)dW1(τ) (1)

where x(τ) is the biomass of the fish population at time τ, r > 0 is the intrinsic

growth rate, K > 0 is the environmental carrying capacity, E(τ) is the fishing effort,

q is the catchability coefficient, σ1(τ) is the diffusion component representing the

random growth effects, and dW1(τ) denotes standard Wiener increments. The effort

is constrained as 0 ≤ E(τ) ≤ Emax for all τ, where Emax is a fixed constant.

The price dynamics is also given by an Itô-stochastic differential equation

dp(τ) = µ (τ) dτ + σ2 (τ) dW2(τ) (2)

where p(τ) is the price per unit harvest, µ (τ) is the drift in price, dW2(τ) denotes

standard Wiener increments, and σ2 (τ) is the diffusion component representing the

magnitude of random price effects. We assume the cost of harvest to be of quadratic

form, given by c1E(τ)+ c2

2
E(τ)2, where c1 and c2 are positive constants. Considering

the optimal harvesting strategy to be the one which maximizes the expected net

present value of total profit, the problem can be formulated as an optimal control

problem with the control variable being E(τ) and the value function given by

J∗(x(0), 0) = max
E(t)

E

[
∫

T

0

e−δt

(

p(τ)qx(τ) − c1 −
c2

2
E(τ)

)

E(τ)dτ

]

(3)

The optimal harvesting policy is determined using the stochastic dynamic program-

ming technique which yields Hamilton-Jacobi-Bellman partial differential equation

for the discounted flow of profit as follows:

−
∂J∗

∂t
= max

E(t)

[(

p(τ)qx(τ) − c1 −
c2

2
E(τ)

)

E(τ) − δJ∗

+µ(τ)
∂J∗

∂p
+

{

rx(τ)

(

1 −
x(τ)

K

)

− qE(τ)x(τ)

}

∂J∗

∂x

+
σ1(τ)2

2

∂2J∗

∂x2
+

σ2(τ)2

2

∂2J∗

∂p2

]

(4)

3 Conclusions and discussion

Due to the non-linearity and complex nature of the Hamilton-Jacobi-Bellman equa-

tion, the Crank-Nicolson finite-difference method is employed to obtain numerical

solution. The simulations show that the stochastic model behaves like the determin-

istic model in the mean sense. The sensitivity of the net present value of total profit

with respect to the catchability and the cost parameters is analyzed numerically.

For low catchability it is noted that the quadratic term in the cost function has a

significant effect on the discounted total profit whereas the effect of the linear term

111



is negligible. For high catchability, the discounted total profit is seen to be more or

less constant with the optimal effort at maximum level.

The world has witnessed many fisheries collapsing due to over-exploitation. We

try to mitigate this problem by maintaining the population above the minimum

viable level throughout the harvesting period. The assumption of a cost function

which is quadratic in fishing effort allows us to derive an analytical expression for

the optimal effort; the resulting solution is different from the bang-bang solution

which is usually obtained in the case of a cost function which is linear in effort.

With the bang-bang solution there exists an optimal population threshold above

which it is optimal to harvest at full capacity. If the initial population level is below

this threshold then the optimal harvest rate is zero; the population is allowed to

grow until it reaches the optimal threshold, and then it is harvested using maximum

effort. In other words, the optimal effort switches between zero and its maximum

value. Whereas, a cost quadratic in effort allows the optimal effort to assume values

other than zero and maximum.

In this work, the drift component µ in the price dynamics is assumed to be

zero. Another possibility is to incorporate a drift dependent upon the harvest or

the population available for harvest at each time stage. Moreover, the two standard

Wiener processes dW1 and dW2 governing the random changes in the population

growth and the price dynamics are assumed to be uncorrelated. This analysis can

be extended to include correlation between dW1 and dW2.
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Abstract

We formulate the beam intensity optimization problem of IMRT as a multiobjective

linear programme (MOLP). The constraints of the MOLP involve the dose deposi-

tion matrix. It is calculated by mathematical models of the physical behaviour of

radiation as it travels through the body. The results are always imprecise due to the

nonuniform composition of the patient body. Thus, solving the MOLP exactly may

give an unwarranted impression of precision, but the result of the optimization can

of course not be more precise than the input data. Therefore, it is perfectly accept-

able to solve the MOLP approximately to within a small fraction of a Gy (Gray, the

unit of measure for radiation dose) for clinical purposes. We propose two objective

space methods for approximately solving the MOLP. They are an approximation

version of Benson’s algorithm and an approximate dual variant of Benson’s algo-

rithm, which solve the primal MOLP and dual MOLP, respectively. We proved that

they are guaranteed to find -nondominated sets. Application of the two methods

to the beam intensity optimization problem for clinical cases shows that the dual

approximation method always shows a computational advantage in our experiments.
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Abstract

Forest harvesting applications with restrictions on the permitted area of con-
tiguous clearfell are usually modelled by using numerous adjacency constraints. We
replace these adjacency constraints with a technique involving adjacency branches.
Each branch is based on an actual clearfell area violation. These violations are
found with respect to nuclear sets and associated time intervals. The adjacency
branches which eliminate these violations are constructed with respect to the same
nuclear sets. The talk will include results from numerical trials indicating recent
progress with this model.

Key words: forest harvesting, linear programming, adjacency constraints, area
restriction model, optimization.

1 Problem review

When timber is felled in a large commercial forest it is generally required that the
size of the openings be restricted. The purpose for this regulation is so as to main-
tain environmental standards, preserving soil, shelter and drainage. In particular
we wish to avoid erosion, sheet-runoff, silting of streams and the associated eye
sores.
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It is customary to model forest harvesting applications as mixed integer pro-
grammes. The objective is the present net worth of the forest, which is to be
maximized subject to various strategic and site-specific constraints, as explained
by McNaughton et al [9]. The most troublesome of these constraints are the so-
called adjacency constraints. These are used to enforce the regulation concerning
the maximum area of opening. We use the term clearfell to describe a contiguous
area of the forest which has been recently harvested. Once such a clearing has been
made, none of the surrounding forest may be cut for a certain specified length of
time, the greenup period, T, which is typically between 5 and 10 years. The term
area restricted model, ARM, is used by Murray [14] to describe this situation.

This paper is part of a continuing research project and should be read as a
sequel to related papers at ORSNZ 2001 [10], 2002 [11], 2003 [12] and 2004 [13].

The aim of this research project is to develop an appropriate model and an
effective solution algorithm which solves the forest harvesting problem with area
restricted clearfell in an exact sense. The key idea is to replace the customary
plethora of complicated adjacency constraints by a system of a much smaller number
of adjacency branches.

2 Literature review

The bibliography contains a number of relevant papers. Particular attention is
drawn to the several recent ARM formulations by Crowe et al [2], Goycoolea et al
[3], Gunn and Richards [4], Murray et al [16] and Vielma et al [17]. These very
recent papers present exact solutions to ARM formulations, but the performance
attained has limitations particularly with respect to the number of time periods in
the planning horizon. The maximum number of time periods considered in these
papers is no more than 7. In addition there are limitations with respect to the
forest size. Only 2 of these models appear capable of dealing with forests of over
1000 units.

3 Model outline

The key concept is that of a nuclear set. This consists 2 parts. First there are 1 or
more contiguous units which form the nucleus, the sum of whose area is less than
or equal to the maximum clearfell area. The second part, the perimeter, consists
of those units adjacent to the nucleus each of which individually has sufficient area
to produce (along with the nucleus) a clearfell violation. A clearfell violation then
consists of a nuclear set along with a time interval, say [a, b], (with b− a ≤ T ) such
that all the units in the nucleus are felled within the interval [a, b] and in addition
at least 1 of the perimeter units has also been felled in the appropriate time interval
[b − T + 1, a + T − 1].

The model incorporates both column generation and constraint generation, al-
though the latter is essentially a component of the adjacency branching. An initial
relaxed LP contains only road plan constraints, non-declining yield constraints and
yearly area constraints. The initial variables consist just of elementary columns
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each representing the harvesting of just 1 unit in a given year. Column generation
then develops numerous composite harvesting plans leading to an improved objec-
tive value. The resulting solution is then searched for clearfell violations. The way
this is done is that each nuclear set is checked sequentially to detect any violations
of the sort noted above. If an adjacency violation is detected an adjacency branch is
implemented to remove this violation. The detail of these branches is given below.
The RLP is then re-optimized and more column generation follows.

Once no clearfell violations remain the solution is scanned to find any fractional
decision variables. These are then removed by constraint branching (also called
integer branching) in the manner developed by Ryan [9]. Once no adjacency vio-
lations and no fractional decision variables remain, the associated integer solution
is recorded. The branch and bound tree continues to be searched until either an
acceptable objective value is obtained, or the root node is found.

4 Modifications to the model

The most significant modifications to the model since the 2004 paper [13] are as
follows. The definition of a nuclear set has been modified. The list of nuclear sets
has roughly doubled in size, but the previous complicated method for determin-
ing the minimum such list has now been removed. The need for any adjacency
constraints has now been removed. This has allowed the solution of much bigger
applications. There are now a greater number of branching steps, but each branch
is much simpler and the solution algorithm moves through these branches much
smoother.

5 Adjacency branches

This is the major innovation, and will be described in detail. Suppose a nuclear
set has n units in its nucleus. Suppose we find an adjacency violation with a
nucleus felled in time interval [a, b] and at least 1 of the perimeter units felled in
[b − T + 1, a + T − 1]. For the 1-branch we require all the nucleus felled in time
interval [a, b] and none of the perimeter units felled in [b − T + 1, a + T − 1]. For
the 0-branch we require at most n − 1 of the nucleus units felled in time interval
[a, b] and there are no restrictions of the perimeter units. Adjacency branches are
prioitized with respect to the net present worth of the nucleus.

6 Numerical results from trials

The following table records results from a simulated trial involving 400 units.
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horizon green-up objective upper time adjacency
(time periods) (time periods) (million $US) bound (seconds) branches

5 1 6.12 6.13 3 23
2 6.06 6.13 8 45
3 6.02 6.08 7 32
4 5.76 5.95 3 33
5 5.58 5.70 7 45

10 1 10.85 10.86 6 47
2 10.78 10.80 13 64
3 10.72 10.73 13 68
4 10.60 10.70 17 80
5 10.49 10.59 19 94

15 1 14.27 14.42 44 88
2 14.23 14.37 53 101
3 14.12 14.13 33 102
4 14.00 14.11 32 124
5 13.85 13.99 52 153

20 1 16.71 16.72 52 75
2 16.66 16.67 68 136
3 16.59 16.67 98 153
4 16.46 16.50 74 165
5 16.05 16.25 73 166

Table 1: Trials involving a poorly regulated forest of 400 units.

Successful trials have been completed with up to 1600 units. Various forest types
have been considered including over-mature, poorly regulated and well regulated.

7 Conclusions and on-going research

The model appears to represent an advance especially with respect to the number of
time periods being used. It is significant that multiple period green up is possible.
This results in planning at a much more precise level than is usually obtained in
tactical forest planning. It is encouraging that large applications of 1600 units
are possible, but it is hoped to extend the capacity further. The model has been
simplified, partly to make it easier to explain, but it would be good now to consider
incorporation of more constraints. In particular, road planning constraints could
be easily incorporated.
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