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Abstract

The most convenient route to connect two locations is often a mix of different trans-

portation systems. For instance, a user can make intercity trips by selecting a

combination of transport modes such as car, rail, ship or airplane. In this case

the transportation system is said to be multimodal. In this paper, real multimodal

transportation systems are experimentally analyzed. Real road–rail networks from

Denmark, Hungary, Spain, Norway and New Zealand are built based on a set of

digitized transportation maps obtained from several GIS libraries. These networks

are modelled as coloured–edge graphs to be used as main input by a multimodal

Dijkstra’s algorithm that computes a set of optimal paths. The cardinality of the

resulting set is at the core of the approach tractability. It is concluded that vertices

connectivity and network shape considerably affect the total number of optimal

paths.

Key words: Multimodal network, coloured–edge graph, GIS libraries, transporta-

tion networks.

1 Introduction

A multimodal network (MMN) is a transportation system that considers two or

more transport choices for connecting locations (vertices) in a network. Freight and

urban transportation are two application fields in which multimodal networks are ex-

tensively found. In (Bontekoning, Macharis, and Trip 2004) freight transportation

is thoroughly reviewed for identifying possible research trends. The authors here

conclude research in multimodal freight transportation is still in a pre-paradigmatic

phase. Urban transportation deals with the movement of passengers in urban areas

considering variables such as congestion levels (flow), public fares, transport modes

(bus, subway, private car or bicycle), service demand and user behaviour. Some
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overviews about urban transportation are found in (Boyce 2007), (Lee 1994), (We-

gener 1994) and (Nagurney 1984). Despite their popularity as multimodal research

field, freight and urban transportation are not the only areas where multimodal net-

works can be used as a modelling tool. Application studies into computer networks

(Nigay and Coutaz 1993), biomedicine (Heath and Sioson 2007) and manufacturing

(Medeiros et al. 2000) can be noticed in the literature too.

One problem associated to MMN is the determination of a shortest path from an

origin to a destination. The shortest path problem has been extensively studied in

both practice and theory. Likewise, a large number of algorithms have been devel-

oped by different fields of enquire such as operation research and computing sciences.

When dealing with algorithms for multimodal networks, researchers and practition-

ers typically opt for techniques based on variations of classical approaches such as

Dijkstra’s algorithm or Bellman–Ford method (a description of these approaches is

found in (Lawler 2001)). However, a direct application of these approaches gener-

ates a shortest path that does not consider the multimodal traits of the network

as part of the analysis. Thereby, an optimal combination of means of transport is

an outcome of the shortest path itself. Consequently, a multimodal network cannot

be treated as a “unimodal” because each edge includes an additional variable (the

mode) that has to be included as part of the analysis.

An appraisal is carried out in this paper to analyze the comportment of the

shortest path problem in real MMNs. The employed modelling approach takes a

coloured–edge graph that represents modes, cities and intercity links by colours,

vertices and edges. This graph is used by a generalization of Dijkstra’s algorithm

that computes a set of optimal paths. This set of paths is the key of the model’s

tractability so that experiments are set for tracing its value. Unlike others ap-

proaches, the presented modelling and computational techniques are able to keep

the multimodal traits of the network throughout the analysis. The results indicate

that the total number of optimal paths is significantly influenced by the shape and

connectivity of the network.

The remainder of this paper is organized in four further sections. First the

modelling approach and the algorithm are described in section 2. The experimental

setup is described in section 3. Results are given in section 4. Finally, section 5

provides conclusions and future work in this research field.

2 Model and Algorithm

2.1 The Coloured–Edge Graph Model

The coloured–edge graph is a modelling tool introduced by (Ensor and Lillo 2009) for

the modelling of MMNs. This graph modelling approach labels edges with colours for

representing a specific attribute such as a transport mode. In a real transportation

system, two locations might be connected by several modes. For this case, the

coloured–edge graph allows the use of multiple edges. These edges can be directed

or undirected as well as weighted or unweighted. In this research weighted coloured–

edge digraphs are utilized to model real multimodal transportation networks from

several countries.

In their work (Ensor and Lillo 2009) formally define a weighted coloured–edge

graph as G = (V,E, ω, λ) which is a directed graph (V,E) with vertex set V and

edge set E, a weight function ω:E → R
+ on edges, and a colour function λ:E → M
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on edges. M is a finite set of colours with k = |M |. Each edge euv ∈ E joining

vertices u and v has a positive weight ω(euv) and a colour λ(euv). For any colour

i ∈ M and for any path puv between two vertices u and v, the path weight ωi(puv)

in colour i is defined as ωi(puv) =
∑

euv∈p,λ(euv)=i ω(euv). The total path weight is

represented as a k-tuple (ω1(euv), . . . , ωi(euv), . . . , ωk(euv)), giving the total weight

of the path in each colour.

Only limited research has been conducted in the area of coloured–edge graphs.

(Climaco, Captivo, and Pascoal 2010) studied the number of spanning trees in a

weighted graph whose edges are labelled with a colour. This work defines weight

and colour as two conflicting criteria. Hence, the proposed algorithm generates

a set of nondominated spanning trees. The computation of coloured paths in a

weighted coloured–edge graph is investigated by (Xu et al. 2009). The main feature

of their approach is a graph reduction technique based on a priority rule. This rule

basically transforms a weighted coloured–edge multidigraph into a coloured–vertex

digraph by applying algebraic operations upon the adjacent matrix. Additionally,

(Xu et al. 2009) provide an algorithm to identify coloured source–destination paths.

Nevertheless, the algorithm is not intended for general instances because it just

works with the number of edges as a path weight. Furthermore, only paths having

consecutive edges with distinct colours are considered.

2.2 Multimodal Dijkstra’s Algorithm

Aweighted coloured–edge graph can produce a factorial number of source–destination

paths. For instance, the total number of paths in a complete coloured–edge graph

is O (kn−1(n− 2)!). This can be proved by applying a basic counting argument.

However, the question is how many of these paths are optimal (shortest). At first

glance, traditional shortest path algorithms might be able to provide an answer.

Nevertheless, these procedures were originally designed for “unimodal” networks.

Thus, a direct application of such algorithms on a coloured–edge graph produces

outcomes that do not take transport modes into consideration. This section explain

a procedure designed by (Ensor and Lillo 2009) that extracts a set of optimal path

from a weighted coloured–edge graph base on a general version of the well–known

Dijkstra’s algorithm. Firstly, some notation need to be introduced.

Let Muv be the set of shortest paths joining two vertices u and v in a weighted

coloured–edge graph. This set can be extracted from a weighted coloured–edge graph

by defining a partial order relation on weight tuples. As a result, a smaller set of

paths is obtained. Each k–tuple inMuv is Pareto efficient which means that a weight

in a tuple cannot be improved (or worsened) without worsening (or improving) the

same weight of another. The cardinality of Muv is a key factor in determining the

tractability of the model.

The computation of Muv is performed in (Ensor and Lillo 2009) by a generaliza-

tion of Dijkstra’s algorithm. Unlike its classic counterpart, the multimodal Dijkstra’s

algorithm (MDA) has a partially ordered data structure to manage path weights.

The algorithm takes as input a coloured–edge network G and a source vertex s. It

commences at s with the empty path and relaxes each edge that is incident from

the source vertex s, adding the single edge paths to the queue. At the front of the

queue will be a shortest path estimate to some vertex v adjacent to s. Next, the

algorithm determines the shortest paths to v (note that there are more than one)

and relaxes edges incidents to v. This iterative process finishes when the queue has
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no more paths to be compared.

3 Experimental Setup

The experimental study collected vector data information about Denmark, Hun-

gary, Spain, Norway and New Zealand from a GIS library (Geofabrik 2010). These

countries were selected based on their similarities in shape and number of locations.

For example, New Zealand has resemblances with Norway in shape and number of

vertices. Both countries have a long shape and a number of locations between 100

and 200. In addition, one interest of this paper was to establish the extent in which

a european multimodal transportation system differs from the New Zealand one.

The multimodal networks were stored and maintained as a set of vertices and

bidirectional links. A network dataset for each mode was generated by firstly snap-

ping vertices (towns and cities) to network features according to a tolerance radius.

Secondly, a connectivity map was created by an ad-hoc algorithm that iterates itself

through vertices. As a spin–off, this algorithm also calculated the real intercity dis-

tances as decimal geographic degrees. Additionally, airways were added as a third

mode for Norway and New Zealand. Straight distances between airports were used

as edge length in this case so that airports had to be snapped to cities to build a con-

nectivity map. Airway data was obtained from (OpenFlights 2010). Characteristics

of the resulting networks are shown in Table 1.

Table 1: Characteristics of the Networks

Network Country Vertices Edges Modes

1 Denmark 124 1284 Road,Rail

2 Hungary 305 7418 Road,Rail

3 Spain 901 5326 Road,Rail

4 Norway 122 641 Road,Rail,Airways

5 New Zealand 183 1436 Road,Rail,Airways

As an illustration, Figure 1 displays the Hungary roadway system which is com-

posed by motorways and primary roads. Likewise, Figure 2 yields a view of New

Zealand airway system.

The reported runtimes corresponds to CPU times by computing the total number

of shortest path trees (Muv cardinality) from a source vertex. Each of these trees

can be composed by any number of transport modes. Networks were all tested on a

standard double core desktop computer of 1.86 GHz and 1.99 GB of RAM.

The calculation of Muv cardinality was settled upon two different source vertex

scenarios. Scenario 1 considered the capital city of each country as source vertex

whereas Scenario 2 uses an extreme city as source. For instance, Wellington and

Invercargill were picked as source vertices for scenarios 1 and 2 respectively in the

New Zealand’s case. Besides, the algorithm was responsible by reporting the total

number of processing paths ( total number paths taken by the iterative subroutine of

the MDA) as well as average and maximum Muv cardinality. Average cardinality is

calculated by averaging all vertices’ cardinalities whereas the maximum cardinality

corresponds to the largest value of Muv cardinality among vertices.
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Figure 1: Hungary roadway system.

4 Results

Results for Scenario 1 are shown in Table 2. CPU times are given in seconds.

One fact that Table 2 evidences is that just a small number of paths become

optimal in comparison to the number of processing paths taken by the algorithm.

No more than 2% of such paths became optimal for the studied multimodal networks.

This is a promising result from a tractability viewpoint.

Spain and New Zealand obtained the largest values of Muv cardinality. What

these countries have in common is a high level of network overlap between road and

rail as well as a high number of cities located along such overlaps. These features

Figure 2: New Zealand airway system.
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Table 2: Results for multimodal networks from vector data: Scenario 1

Network Source city Average Maximum Processing CPU

Muv cardinality Muv cardinality Paths time

1 Copenhagen 56 171 10704 0.515

2 Budapest 69 227 53587 6.024

3 Madrid 133 1039 181976 32.216

4 Oslo 41 147 6248 0.158

5 Wellington 759 9342 611230 311.184

together induce a high number of optimal paths because some network sections

resemble a coloured–edge chain. Coloured–edge chains are important subgraphs in

a general coloured–edge graph because they are able to elicit a worst case scenario.

In their work (Ensor and Lillo 2010) show the worst case of a weighted coloured–

edge graph occurs when a hamiltonian coloured–edge path (or coloured–edge chain)

concentrates most of the lowest weights. In addition, weights in this chain have to

satisfy an special equality condition. When these two requirements come together,

the total number of optimal paths is O(kn−1). In practical terms, those cities (or

towns) that require a greater number of intermediate connections to be reached are

prone to generate an elevated number of shortest coloured–edge paths. To envision

the concept of network overlap, Figure 3 shows road and rail networks for New

Zealand.

On the other hand, the rich variety of network links presented in Denmark,

Hungary and Norway reduce overlap so that the number of optimal paths tend to

be lower. Moreover, maximal cardinalities were found in remote cities (or towns)

with no direct link from the sources. For example, Frederiksharn and Rakamaz

were the locations reporting the maximum number of optimal paths for Denmark

and Hungary, respectively. This indicates the number of optimal paths is affected

Figure 3: New Zealand road (left) and rail (right) networks. Note the high level of

overlap in the east side of the country.
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whether the location of the source is changed. A special case is a vertex located at

one of the country extremes.

Scenario 2 was set to analyze the impact that source location has on the cardi-

nality of Muv. Table 3 summarizes the corresponding results. The selected location

were extreme points situated at one of the four cardinal points. Spain and New

Zealand again concentrates the highest numbers of paths. Here, maximum cardinal-

ities were obtained in San Fernando (Spain) and Riverton (New Zealand). Observe

that the number of transport modes is not changing the cardinality pattern. Al-

though more modes do increase Muv cardinality, the overlap is maintained since the

configuration of the networks remains unchanged in each mode.

Table 3: Results for multimodal networks from vector data: Scenario 2

Network Source city Average Maximum Processing CPU

Muv cardinality Muv cardinality Paths time

1 Hanstholm 76 332 20009 1.262

2 Csenger 149 600 135218 68.423

3 Tarroella 423 1864 606609 507.657

4 Ergersund 78 245 11674 0.332

5 Kaitaia 5969 33246 1644768 20572.52

5 Conclusions

Real–world multimodal networks were computationally investigated in this work.

The experiments were based on digitized road, rail and airways maps from Denmark,

Hungary, Spain, Norway and New Zealand. Each map was pre–processed to be

used as input by a multimodal version of Dijkstra’s algorithm that produces a set

of optimal paths (Muv). The cardinality of this set was the main variable to be

analyzed because of its influence on the model’s tractability. Such cardinality turn

out to be higher and significantly concentrated on cities situated far away from the

sources in those countries whose transportation systems exhibited a greater level of

overlap. Overlap produces that certain sections of a multimodal network resemble

a coloured–edge chain. These chains were proved by (Ensor and Lillo 2010) to be

the cause of an exponential number of optimal paths in a coloured–edge graph.

Computational times were reasonable considering that the multimodal Dijkstra’s

algorithm was implemented with a basic data structure (priority queue). Multimodal

networks in Scenario 2 required longer runs than Scenario 1 due to the relocation of

the sources. This relocation effect indicates higher number of optimal path could be

needed to reach distant cities (or towns) when the source vertex is located at the very

extreme of a country. Scenario 2 is besides attesting that country shapes are able

to alter the number of optimal paths. Longer and slimmer shapes are thus closer to

behave as a coloured–edge chain. Hereby, the special shape of New Zealand is also

accounting for the elevated number of optimal path found for its extreme locations.

Although Norway has a shape resemblance with New Zealand, the lower number of

optimal paths is explaining by different circumstances: (1) Norway’s rail system is

not able to connect the entire country. Rail roughly covers just 20% of the territory.

(2) The multimodal transportation system of Norway goes from dense to very sparse
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as a user moves from the south to the north. Road is predominantly defining the

connectivity in the north. (3) The number of airways is much lower than in New

Zealand. New Zealand has about 116 different air connections whereas Norway has

just 62.

There were not remarkable differences in using two or three transport modes.

This suggests that shape and connectivity are more determining factors in the

tractability of these networks rather than the value of k.

Future work in this field can tackle the analysis of Muv cardinality on larger

multimodal transportation datasets. This is particularly useful in assessing the

correlation between country shape and tractability. Another issue is related to the

distribution of weights. For instance, a worst case can be built by taking a coloured–

edge chain with pure Euclidean distances as edge weights. However, real distances

are far to be pure Euclidean in real transportation systems. Thereby, real distances

could be causing a reduction in the number of processing paths.

Improvements on the algorithm are required to speed calculations up. There-

fore, faster computational techniques such as parallel computing and ad-doc data

structures could result in much faster implementations of the multimodal Dijkstra’s

algorithm.
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