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Abstract 

This paper will formulate integer programs to determine the optimal positions of wind 
turbines within a wind farm.   
 
The formulations were based on variations of the vertex packing problem.  Three 
formulations are presented, which seek to maximize power generated in accordance 
with constraints based on the number of turbines, turbine proximity, and turbine 
interference.   These were in the form of budget, clique, and edge constraints. 
 
Results were promising, with turbines exhibiting a tendency to concentrate in areas of 
high elevation and avoid situations where downstream interference would be 
significant. 
 

 

1. Development of the integer programs 

Three (mixed) integer programming models are presented.  The first two integer 
program models are vertex packing problems, while the third MIP model is a 
Generalized Vertex Packing Problem (GVP) [1].  The GVP problem was introduced by 
Hanif D. Sherali and J. Cole Smith [2].   
 
In these formulations, G = (V, E) denotes a graph with vertices V and edges E VxV.  
The set E is set of vertex pairs between which there exists some relationship.  In our 
case, the vertices V correspond to the locations where turbines can be positioned, and 
the edges E represent relationships between the vertices, such as turbine proximity and 
interference.   

⊆

 
An appreciation of the relationship between the physical domain and the graph on 
which the (mixed) integer programs are based is crucial to understanding the material 
that follows.   
 
The graph is based on an orthogonal grid that is superimposed onto the physical 
topography.  The intersection points of this grid represent the vertices in our graph.  The 
vertex packing problem will thus involve selecting the combination of vertices, or grid 
points, which generates the most power. 
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2. Modeling turbine proximity 

The first integer program formulation enforced a minimal separation distance between 
turbines to ensure the blades did not physically clash with one another.  The term 
proximity shall define the area immediately surrounding a turbine in which no other 
turbine can be built.  The grid points that lie within this area are a function of the turbine 
radius and the physical distance between the intersection points in our grid.   
 
Figure 2.1 demonstrates that a turbine centered on the solid vertex will eliminate the 
surrounding vertices as potential locations.  That is, the vertices connected to the solid 
vertex by an edge are too close to accommodate another turbine.  Those vertices that are 
not connected to the solid vertex do not impinge on the space required by this turbine. 

 
Figure 2.1: Vertex proximity constraint. 

To model this proximity requirement we construct the graph G by considering each 
vertex in turn, and placing an edge between this vertex i and any vertex j, where the 
position occupied by j violates the area required by a turbine positioned at i.  For 
example, in Figure 2.1 an edge would exist between the solid vertex and every 
surrounding vertex, as shown by the lines.  This constraint can be formulated 
mathematically as: 

Ejixx ji ∈∀≤+ ),(,1  
An edge constraint of this form will exist between every vertex in our graph and any 
other vertex that lies within the required separation distance.  In the physical model, this 
corresponds to a pair of grid points existing too close for a turbine to be located at both 
positions. 
 
The above “weak edge” formulation can be improved by considering a larger subset of 
vertices affected by turbine proximity.  The structure of the edges on G, as well as the 
relationship between four neighboring vertices Q, is shown in Figure 2.2.   
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Figure 2.2: Clique structure. 

A maximal clique Q is defined as a maximal subset (with respect to cardinality) of 
vertices whereby all vertices in the subset are connected by an edge to all the other 
vertices in the subset.  For the subset Q shown in Figure 2.2, the clique would involve 
all four vertices connected by an edge, with the sum of the turbines constructed in that 
subset constrained to be less than or equal to one.  In general terms, the cardinality of a 
clique will be a function of the turbine radius and distance between the grid points in the 
x and y direction.  Let K denote the set of all maximal cliques in our graph G.  Each 
maximal clique is a subset of V. KQ∈
 
Let Wv denote the power value associated with a vertex v.  Let xv=1 denote a turbine 
positioned at vertex v, and xv=0 otherwise.  A budget constraint restricts the maximum 
number of turbines to be built in the wind farm to be less than or equal to k. 
 
The integer program can now be formulated as: 
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This formulation shall be referred to as IP1.   
 
IP1 led to dense clusters of turbines in areas of high power resource.  This stems from 
the fact that the only constraint on turbine location was the proximity constraint defined 
by the radius of the turbine blades.  To this end, IP1 ensures that turbine proximity is 
not violated.  It does not, however, reflect the influence of interference on the amount of 
power generated at downstream locations. 
 
An example of a 50 turbine farm optimized using IP1 is shown in Figure 2.3, where the 
turbine locations are indicated by the dots.  Recall this has been optimized for wind flow 
from the west. 

 



 

 
Figure 2.3: IP1 results (50 turbines). 
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The solution to IP1 has the following features: 
1. Turbines are concentrated in areas of high power resource. 
2. The proximity constraint prevents turbines from occupying adjacent vertices. 

 
 
3. Modeling turbine interference 

Interference between turbines was not taken into account in the formulation of IP1.  The 
industry standard recommended separation distance will now provide the basis for an 
integer program formulation that accounts for turbine interference.  The distance 
required between turbines is taken to be 7 turbine diameters when aligned in the 
predominant direction of flow, and 3 turbine diameters in the other direction [3].  Figure 
3.1 demonstrates these separation distances when a turbine is centered at the shaded 
vertex. 
 

 

Wind 

Figure 3.1: Fixed separation distance. 

Figure 3.1 shows that a turbine centered at the solid vertex will influence the immediate 
surrounding vertices as well as vertices further downstream.  Vertices outlined with a 
dark line are unaffected.  This model of interference will, therefore, increase the size of 
the cliques to reflect both turbine proximity and turbine interference.  This formulation 
shall be referred to as IP2. 
 

 



 

The results from IP2 varied significantly from IP1, as shown in Figure 3.1. 
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Figure 3.2: IP2 results (50 turbines). 

The solution to IP2 has the following unique features: 
1. The larger cliques prevent turbines from clustering 
2. Turbines are aligned perpendicular to the main direction of flow, reflecting the 

smaller separation distance imposed in this direction. 
 
IP2 is an improvement over IP1 because turbine interference is taken into account.   
 

 
4. A better model for turbine interference 

While IP2 is an improvement over IP1, the imposition of an arbitrary separation 
distance between turbines is a blunt approach to turbine interference.  Instead, it would 
be better to position turbines according to the net power gain, which is defined as the 
amount of power generated less the magnitude of interference. 
 
This separates the area surrounding each turbine into two distinct measures, which 
reflect: 

1. Proximity 
2. Interference 

 
These measures are shown in Figure 4.1. 
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Figure 4.1: Proximity and interference effects. 

 



 

Figure 4.1 shows that a turbine positioned at the solid vertex will physically obstruct the 
surrounding vertices, to which it is connected by a solid line.  As a result, the set of all 
cliques K is identical to the proximity constraints formulated in IP1. 
 
However, this model distinguishes itself by introducing edge based on the interference 
between vertices.  The graph G considers each vertex in turn, and places an edge 
between this vertex u and any vertex v that experiences interference above a certain 
magnitude.  In Figure 4.1, for example, an edge would exist between the solid vertex 
and every vertex that is connected to it via a dashed line. 
 
Let EI denote the set of edges between all vertices u and v that interfere with each other.  
Variable zuv=1 if a turbine is positioned at u and v, and zuv=0 otherwise.  This can be 
formulated mathematically as: 

uvvu zxx ≤−+ 1  
Let Iuv denote the magnitude of the power loss caused by interference between vertices 
u and v.  The methods used to determine I are outside the scope of this paper.  If zuv =1, 
which denotes that a turbine is positioned at both xu and xv, then the expected value of 
the power generated will decrease by the amount Iuv.   
 
The mixed integer program formulation, which shall be referred to as MIP1, then 
becomes: 
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The decision variables z are not constrained to be binary because the formulation 
enforces them to take binary values of 0 or 1.  This follows from I being strictly 
positive.  A variable zuv takes a value of 0 unless the corresponding interference 
constraint forces it to assume a value greater than or equal to 1.  In this event, the 
deleterious impact of I on the objective function causes zuv to assume the smallest value 
possible, which is 1.   
 
The results generated using MIP1 are shown in Figure 4.2. 
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Figure 4.2: MIP1 results (50 turbines). 

The major difference between IP2 and MIP1 is in the ability of the latter to evaluate the 
balance between power generation and interference losses.  This means that in situations 
of high power resource, MIP1 is willing to accept interference if the net power 
generated will be more than what would result from another position.   
 
Therefore, the MIP1 formulation is distinct from IP1 and IP2 in that it strictly enforces 
turbine proximity, while accounting for turbine interference using edges.  MIP1 can 
evaluate the net benefit of turbine interference in positions of high power resource, and 
position turbines accordingly. 
 
 
5. Analysis of results 

All of the aforementioned formulations were modeled in AMPL and solved using 
CPLEX version 6.6.0 with default settings.  AMPL is a text based algebraic modeling 
language used to program optimization problems.  CPLEX is a commercial solver for 
mixed integer problems. 
 
The difference between the expected power outputs for IP2 and MIP1 reflects the value 
of compromising on the separation distance between turbines in areas of high power 
resource.  MIP1 outperformed IP2, particularly as the maximum number of turbines k 
was increased.  This trend is shown in Figure 5.1. 

 



 

 
Figure 5.1: Comparison of average power output from IP2 and MIP1. 

Figure 5.1 demonstrates that, for wind farms involving more than 45 turbines, the 
optimal configuration determined by MIP1 would generate approximately 10 percent 
more power than IP2.  This is a significant gain. 
 
 
6. Performance of MIP1 

General vertex packing problems, which contain vertex packing problems as a specific 
case, are NP-hard.  It is extremely unlikely that there exists an efficient algorithm to 
solve these problems.  Efficient means that the algorithm will run in polynomial time.   
 
This section will assess the performance of MIP1.  The number of decision variables 
involved in MIP1, as determined by the number of vertices and interference edges, is a 
function of the number of grid points and the methods used to determine interference.   
 
Graphs of the problem size against number of variables and number of non zeros are 
shown in Figures 6.1 and 6.2. 

 
Figure 6.1: Number of variables versus problem size. 

 



 

 
Figure 6.2: Number of non zeros versus problem size. 

 
Moreover, the maximum number of turbines in the farm, k, also had a significant impact 
on the time taken to solve to optimality.  For a sample problem involving 2400 grid 
points, only configurations involving less than 10 turbines could be solved to optimality 
in less than one hour.  This was on a machine operating Windows 2000 with a 3.00MHz 
Pentium IV processor and 1 gigabyte of RAM. 
 
The gap between the value of the best feasible solution and the best bound found after 
one hour is plotted in Figure 6.3. 

 
Figure 6.3: Branch and bound gap. 

7. Conclusions and future work 

This paper has outlined methods for the optimization of turbine locations within a wind 
farm.  Several integer program formulations were presented.  The final formulation was 
designed to maximize the total power generated while observing turbine size and 
turbine interference.  Constraint formulation was based on cliques and edges derived 
from the underlying vertex graph.   
 
The integer programs could be solved close to optimality in acceptable time.  Results 
were consistent with expectations, with turbines exhibiting a preference for areas of 

 



 

high elevation.  The MIP used in this project performed well, even when confronted 
with relatively large problems.  However, the potential exists for the model to be 
extended beyond its current form. 
 
A potentially important constraint would exclude areas of unduly steep terrain from 
being selected as a turbine location.  This could be incorporated by using information on 
topographical gradients.   
 
Another interesting constraint would involve relating the total distance between turbines 
to some construction cost that reflects, for example, the length of trenching required.  
This would involve another “interference” type sub graph, where cost was linear in 
variables defined over vertex pairs.  More complex interference shapes could be 
modeled using a set packing formulation. 
 
The budget constraint k could be replaced by a measure of productivity, which 
controlled the maximum number of turbines that are built.  The MIP would then 
construct as many turbines as possible, while satisfying some minimum output for each 
turbine.  This minimum output could be determined by considering the desired payback 
period for the wind farm investment. 
 
This means that for every turbine location i, the amount of power generated less the 
interference experienced must exceed some critical value, denoted by P.  This constraint 
is formulated mathematically as: 
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There are also opportunities for the application of heuristic algorithms to work towards 
improved solutions.  These may be particularly useful for problems involving nonlinear 
constraints, such as noise and line of sight, or for improving on a non optimal solution 
generated by the branch and bound process.  The greater complexity of these constraints 
may well be suited to heuristic, rather than exact, solution methods. 
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