
Upper and lower bounds for saddle

functions

Regan Baucke

Department of Engineering Science

University of University

New Zealand

r.baucke@auckland.ac.nz

Abstract

In this talk, we will present an intuitive construction of upper and lower bound

functions for a given saddle function. We will present these bounding functions

in the context of an algorithm which computes a saddle point of the given saddle

function. Finally, we demonstrate how these upper and lower bounding functions

play a part in a more complex algorithm used to solve a class of minimax stochastic

dynamic programmes.

Examples of such problems are risk averse multistage stochastic programmes,

stochastic programming problems where uncertainty appears in both the right-hand-

side and the objective function, and stochastic sub-game perfect equilibria.

Key words: stochastic programming, minimax, dynamic programming, saddle

point, zero-sum game.

1 Introduction

Dynamic programming and temporal decomposition techniques are popular method-

ologies for solving large optimisation problems. The philosophy behind these tech-

niques is that solving a series of smaller optimisation problems and exploiting their

structure should be faster than solving the optimisation problem in its entirety.

In dynamic programming, cost-to-go functions are computed which encode the

value of future optimal decisions conditional on a given state. A stage problem is

then solved which seeks to minimise the current cost plus the cost-to-go which is

then used to define the cost-to-go function for the current stage and state.

Under certain assumptions (convexity of cost functions, convex and compact

state and control sets) we can define a lower-bound on the cost-go-function as the

maximum of a set of linear cuts. The stochastic dual dynamic programming al-

gorithm (or SDDP see [Philpott and Guan, 2008]) is a popular algorithm which

fits this description. Briefly, this algorithm constructs a lower approximation to the

value-function and iteratively refines this lower approximation by sampling the value

function and updating the function with a “cut” which uses first-order (gradient)

and zeroth-order (point) information. These lower bound value function estimates

are nested backwards by virtue of the recursive nature of the dynamic program-

ming equations. Although the lower approximation isn’t accurate everywhere on

the cost-to-go function’s domain, a particular sampling procedure ensures that the

value functions can be made arbitrarily accurate near the eventual optimal solution.

The key to the convergence of these algorithms relies on two main properties of

the bounding functions: that the functions are valid bounds over the domain of the

cost-to-go function, and secondly that the bounding functions are tight.

In this paper we will introduce a pair of bounding functions which have the sad-

dle function analogue of these two properties. We will show how these bounding

functions work to compute a saddle point of a given saddle function. However, the

foremost utility of these saddle functions is their ability to provide valid bounds on

value functions when the lower and upper bounds are nested i.e. in dynamic pro-

gramming. We will conclude the paper with a discussion about an algorithm which

is able to solve a broad class of multistage stochastic minimax dynamic programmes.

2 Saddle functions

In this section, we discuss several preliminary concepts which are essential for the

description of our algorithm. We introduce the concepts of a saddle function, sad-

dle points, and discuss an extended Lipschitz continuity concept on the Cartesian

product of two vector spaces.

We motivate this section by an algorithm which computes the saddle point of

a saddle function. This problem can be viewed as the saddle function analogue of

the classic Kelley Cutting Plane algorithm for computing the minimum of convex

functions as in [Kelley, 1960].

2.1 Preliminaries

We begin by presenting our definitions and notation of various elementary concepts.

Definition 1. Given sets U ⊂ Rn and V ⊂ Rm, a function g : U × V 7→ R is a

saddle function if g(·, v) is a convex function for all v ∈ V and g(u, ·) is a concave

function for all u ∈ U .

Definition 2. A point (u̇, v̇) ∈ U × V is a saddle point of a saddle function g :

U × V 7→ R if

g(u̇, v) ≤ g(u̇, v̇) ≤ g(u, v̇), ∀(u, v) ∈ U × V . (2.1)

Let U and V , now be compact and convex subsets of their respective Euclidean

spaces. Consider the functions gv(u) = maxv∈V g(u, v) and gu(v) = minu∈U g(u, v);

their existence is guaranteed because g(·, ·) is real valued and U and V are both

compact. It is easy to see that gv(u) is a convex function (and symmetrically, gu(v)

is a concave function). These functions are useful in the next lemma.

Lemma 2.1. If g : U ×V 7→ R is a saddle function, as given in Definition 1 and U
and V are both convex and compact, then the set of saddle points is given by

G =
{

arg min
u

gv(u)× V ∩ arg max
v

gu(v)× U
}
⊆ U × V . (2.2)

Proof. From the minimax theorem of von Nuemann, we have gv(u
∗) = g(u∗, v∗) =

gu(v
∗). With this equality, it is easy to see that (u∗, v∗) directly satisfies Definition

2. This establishes the forward direction of the lemma. Note that for all (û, v̂) /∈ G
we have either:

gv(u
∗) ≤ gv(û) and gu(v

∗) > gu(v̂), or

gv(u
∗) < gv(û) and gu(v

∗) ≥ gu(v̂).

It follows that (û, v̂) does not satisfy Definition 2.

Following from Lemma 2.1, it is easy to see that G is a convex set (being the

intersection of two convex sets), and that all elements of G attain the same value

under g. So far we have established that the set of saddle points of our function

must be convex, and all saddle points have the same function value. We will now

introduce the concept of an ε-saddle point. These points extend the idea of a saddle

point and will aid in describing the convergent properties of the proposed algorithm.

Definition 3. A point (û, v̂) is an ε-saddle point of a function g : U × V 7→ R if

gv(û)− ε ≤ g(u̇, v̇) ≤ gu(v̂) + ε, ε ≥ 0, where (u̇, v̇) is a saddle point. Denote the set

of ε-saddle points as

Gg(ε) = {(û, v̂) ∈ U × V | gv(û)− ε ≤ g(u̇, v̇) ≤ gu(v̂) + ε}. (2.3)

It immediately follows that G(0) = G; that is, the most strict set of ε-saddle points

is the set of ‘true’ saddle points G. As ε increases, the qualification of inclusion is

relaxed so we obtain the property that ε1 ≤ ε2 ⇐⇒ G(ε1) ⊆ G(ε2).

We will now turn our attention to the gradient properties of the saddle function.

For any (perhaps non-smooth) saddle function g : U ⊂ Rn×V ⊂ Rm 7→ R, we want

to make analogies to the concepts of subgradients from convex analysis. We remind

the reader that g(u, v) is convex in u, for a fixed v. We define

∂ug(û, v̂) :=
{
du ∈ Rn | g(u, v̂) ≥ g(û, v̂) + 〈du, u− û〉, ∀u ∈ U

}
. (2.4)

This multifunction is a mapping from a point in U × V to the set of subgradients

of the convex function g(·, v̂) : U ⊂ Rn 7→ R at û. Because g(·, v) is convex in u

we retain all the usual properties of subgradients for wholly convex functions such

as convexity and compactness of ∂ug(û, v̂) over U × V . Of course, the analogous

mapping exists in the vector space where g(u, ·) is concave as

∂vg(û, v̂) :=
{
dv ∈ Rm | g(û, v) ≤ g(û, v̂) + 〈dv, v − v̂〉, ∀v ∈ V

}
. (2.5)

Let us denote the elements of this set as dv(û, v̂). If g(·, ·) is differentiable everywhere,

then we have that ∂ug(û, v̂) is a singleton and ∂ug(û, v̂) = Dug(û, v̂).

2.2 Lipschitz considerations

Here we present and extend the notion of Lipschitz continuity of saddle functions.

The convergence of our proposed algorithm relies on certain Lipschitz continuity

features. First we present the usual definition of Lipschitz continiuty.

Definition 4. We define a Lipschitz saddle function as a saddle function g(u, v)

such that there exists some α ∈ R for which

|g(u1, v1)− g(u2, v2)| ≤ α||(u1, v1)− (u2, v2)||, ∀(u1, v1), (u2, v2) ∈ U × V . (2.6)

u
v

g
(u
,v

)

Figure 1: A saddle function g(u, v) with G (a singleton in this instance) as the

mark and G(ε), ε > 0 as the shaded region.

We say that the saddle function is α-Lipschitz if the definition above holds for the

particular value α. We extend the above definition naturally to allow for different α

values for the convex and concave domains.

Definition 5. A (αu, αv)-Lipschitz saddle function is a saddle function g(u, v) for

which there exists some αu, αv ∈ R where

|g(u1, v)− g(u2, v)| ≤ αu||(u1, v)− (u2, v)||, ∀u1, u2 ∈ U ,∀v ∈ V , (2.7)

|g(u, v1)− g(u, v2)| ≤ αv||(u, v1)− (u, v2)||, ∀u ∈ U ,∀v1, v2 ∈ V . (2.8)

We say a function is (αu, αv)-Lipschitz if the above definition holds for the two

values αu and αv in their respective spaces. Clearly, if a function is (α, α)-Lipschitz,

then it is α-Lipschitz. We formalise this with the following lemma.

Lemma 2.2. There exists two constants αu, αv for which g(u, v) is (αu, αv)-Lipschitz

if and only if there exists a constant α for which g(u, v) is α-Lipschitz.

Proof. The backwards direction of the proof is trivial: from (2.6), picking v1 = v2

clearly satisfies (2.7). Further, picking u1 = u2 satisfies (2.8). We omit the forward

direction of the proof for the purposes of brevity.

2.3 Saddle function estimates

Using the constructions defined above, we will define two functions Ḡ(u, v) and

¯
G(u, v) that bound a given saddle function g(u, v). We will then show how these

functions play a role in an algorithm for computing an ε-saddlepoint of the given

saddle function. Formally, the problem for consideration in this section is the fol-

lowing: for a given saddle function g(u, v) we wish to compute a point (u̇, v̇) such

that

(u̇, v̇) ∈ Gg(ε) ⊆ U × V (2.9)

where U ⊂ Rn and V ⊂ Rm are both convex and compact. The set G(ε) is the set of

ε-saddle points for the saddle function g(u, v). Further, we require that the saddle

function is Lipschitz continuous on U × V .

Let [U×V] denote the set of all finite subsets of U×V . For a given set of sampled

points S ∈ [U×V], we are interested in forming bounding functions, ḠS : U×V 7→ R,

which have the following properties:

S1 ⊆ S2 =⇒ ḠS1(u, v) ≥ ḠS2(u, v) ∀(u, v) ∈ U × V , (2.10)

ḠS(u, v) ≥ g(u, v) ∀(u, v) ∈ U × V , ∀S ∈ [U × V], (2.11)

ḠS(ū, v̄) = g(ū, v̄) ∀(ū, v̄) ∈ S, ∀S ∈ [U × V], (2.12)

where ḠS is the upper bound function using information from a set of sampled points

S. Much like the cutting plane methods from convex optimisation, we will make use

of first-order and zeroth-order information to form their bound.

For a given sample point (û, v̂), let us define the function h̄û,v̂ : Rm 7→ R as

h̄û,v̂(v) := g(û, v̂) +
〈
dv(û, v̂), (v − v̂)

〉
. (2.13)

We note here that the uniqueness of dv(û, v̂) is not required in the subsequent proofs;

without loss of generality we refer to an arbitrary element dv(û, v̂) ∈ ∂vg(û, v̂).

Lemma 2.3.

h̄û,v̂(v) ≥ g(û, v), ∀v ∈ V , ∀(û, v̂) ∈ U × V . (2.14)

Proof. This follows directly from the definition of dv(û, v̂).

Using these cutting planes defined by h̄ on their respective spaces, we are now in

a position to define upper and lower bounding functions for a given saddle function

g.

Definition 6.

ḠS(u, v) = max
µ,λ

µ+ 〈λ, u〉

s.t. µ+ 〈λ, ū〉 ≤ h̄ū,v̄(v) ∀(ū, v̄) ∈ S, (∗)
||λ||q ≤ αu.

(2.15)

This upper bound function is similar to that introduced in [Baucke et al., 2017],

but rather than the right-hand side of constraint (∗) being a constant, it is now

an affine function of v. Immediately we can see that ḠS(u, v) is a saddle function:

being a linear programme (which is maximising) with v in its right-hand side and u

in the objective function. The following lemmas establish that ḠS(u, v) satisfies the

required properties, given in (2.10)-(2.12), as well a Lipschitz-continuity result.

Lemma 2.4. If g(u, v) is a saddle-function and (αu, αv)-Lipschitz on U × V under

the || · ||p norm, then ḠS(u, v) is (αu, αv)-Lipschitz.

Proof. For all v ∈ V , the function ḠS(u, v) is clearly αu-Lipschitz. For all u, the

value of |ḠS(u, v1)− ḠS(u, v2)| is bounded by

max
(û,v̂)∈S

〈
dv(û, v̂), (v1 − v2)

〉
. (2.16)

The function g(u, ·) is αv-Lipschitz so it has uniformly bounded sub-gradients (under

the || · ||q-norm, where 1
p

+ 1
q

= 1, ∀p, q ∈ (1,∞)). So ||dv(û, v̂)||q ≤ αv, ∀(û, v̂) ∈
U × V . This gives the result.

Lemma 2.5. If g(u, v) is a saddle-function and (αu, αv)-Lipschitz on U × V under

the || · ||p norm, and (û, v̂) ∈ S, then ḠS(û, v̂) = g(û, v̂).

Proof. For a given S, the pair (µ, λ) in the feasible region of (2.15) represent the

coefficients of a supporting hyperplane of the points (ū, h̄ū,v̄(v̂)), ∀(ū, v̄) ∈ S where

µ is the intercept and λ is the gradient of the hyperplane. We note here that the

feasible region is always non-empty since

µ = min
(ū,v̄)∈S

h̄ū,v̄(v̂), and λ = 0, (2.17)

is always feasible. Because the function g(u, v) is convex in u and (αu, αv)-Lipschitz,

there exists a supporting hyperplane

g(û, v̂) + 〈du, u− û〉 ≤ g(u, v̂), ∀u ∈ U , (2.18)

where ||du||q ≤ αu and du is in the set of sub-gradients of g(u, v) at (û, v̂). So a candi-

date solution for ḠS(û, v̂) is µ̃ = g(û, v̂)−〈du, û〉 and λ̃ = du which gives ḠS(û, v̂) =

g(û, v̂). This solution is feasible because if the plane supports (ū, g(ū, v̂)), ∀(ū, v̄) ∈
S, then by the concavity of g(u, v) in v and Lemma 2.3, it also supports (ū, h̄ū,v̄(v̂)), ∀(ū, v̄) ∈
S. If another candidate (µ, λ) gives µ+ 〈λ, û〉 < g(û, v̂), then the pair is not optimal

because of the existence of (µ̃, λ̃). If a further candidate (µ, λ) gives µ + 〈λ, û〉 >
g(û, v̂), then the pair does not support the point (û, h̄û,v̂(v̂)), making it infeasible.

This completes the proof.

Lemma 2.6. If S1 ⊆ S2, then ḠS1
(u, v) ≥ ḠS2

(u, v).

Proof. The function ḠS(u, v) is defined by a maximisation problem which is feasible

and bounded. S1 ⊆ S2 implies that the feasibility set of S2 is contained within S1,

giving the result.

Lemma 2.7. If g(u, v) is a saddle function and α-Lipschitz on U × V under the

|| · ||p norm, then ḠS(u, v) ≥ g(u, v) for all (u, v) ∈ U × V.

Proof. For the sake of contradiction, suppose there exists a (ũ, ṽ) ∈ U × V for

which ḠS(ũ, ṽ) < g(ũ, ṽ). By defining S∗ = S ∪ (ũ, ṽ), and by Lemma 2.5, we have

g(ũ, ṽ) = ḠS∗
(ũ, ṽ). So ḠS(ũ, ṽ) < ḠS∗

(ũ, ṽ), which is precluded by Lemma 2.6,

completing the proof.

The following lemma establishes a monotonicity result with respect to the bound-

ing functions’ saddle point.

Lemma 2.8.

min
u∈U

ḠS(u, v) ≥ min
u∈U

g(u, v), ∀v ∈ V . (2.19)

Proof. Suppose the statement of this lemma is false, and therefore there exists a

ṽ ∈ V for which minu∈U Ḡ
S(u, ṽ) < minu∈U g(u, ṽ). Now define ū as an arbitrary

minimiser of ḠS(u, ṽ); this gives the following inequality:

ḠS(ū, ṽ) < min
u∈U

g(u, ṽ) ≤ g(ū, ṽ). (2.20)

By defining S∗ = S ∪ (ū, ṽ), and by Lemma 2.5, we have g(ū, ṽ) = ḠS∗
(ũ, ṽ). So

ḠS(ū, ṽ) < ḠS∗
(ū, ṽ), which is precluded by Lemma 2.6, completing the proof.

u
v

g
(u
,v

)

(a) |S̄1| = 2

u
v

g
(u
,v

)

(b) |S̄2| = 3 and S1 ⊂ S2

Figure 2: For the saddle function g(u, v) in grey, the blue surfaces are the upper

bounding function Ḡ(u, v).

Corollary 2.1.

max
v∈V

ḠS(u, v) ≥ max
v∈V

g(u, v), ∀u ∈ U . (2.21)

Corollary 2.2.

max
v∈V

min
u∈U

ḠS(u, v) ≥ max
v∈V

min
u∈U

g(u, v). (2.22)

We note here that the lemmas established above hold symmetrically for the lower

bounding function
¯
GS(u, v).

We now proceed to outline an algorithm that utilises the bounding functions

described above. The algorithm can be considered as the saddlepoint analogy of

Kelly’s Cutting Plane algorithm. We require the conditions set out in (2.9) on

g(u, v) and U and V for the following lemma.

Theorem 2.1. Consider the sequences

uk = arg min
u∈U

max
v∈V ¯

GSk−1(u, v), (2.23)

vk = arg max
v∈V

min
u∈U

ḠSk−1(u, v), (2.24)

Sk = Sk−1 ∪ (uk, vk),

with

ḡk = min
u∈U

max
v∈V

ḠSk−1(u, v),
¯
gk = min

u∈U
max
v∈V ¯

GSk−1(u, v). (2.25)

We have that

lim
k→∞

(
ḡk −

¯
gk
)

= 0.

We will use Ḡk(u, v) as a notational shorthand for ḠSk(u, v). We proceed with

the proof of Theorem 2.1.

Proof. From (2.23) and (2.25), we have

¯
gk ≥

¯
Gk(uk, v), ∀k,∀v ∈ V .

For ḡk, from (2.25) we have

ḡk ≤ Ḡk(u, vk), ∀k,∀u ∈ U .

It follows then that,

ḡk −
¯
gk ≤ Ḡk(uk, vk)−

¯
Gk(uk, vk), ∀k. (2.26)

We will now show that the RHS of (2.26) converges to 0 as k tends to infinity – this

will complete the proof. Suppose there exist some ε > 0 for which

ε ≤ Ḡk(uk, vk)−
¯
Gk(uk, vk), ∀k.

Subtracting Ḡk(uk̂, vk̂)−
¯
Gk(uk̂, vk̂) from both sides gives

ε− Ḡk(uk̂, vk̂) +
¯
Gk(uk̂, vk̂) ≤

Ḡk(uk, vk)−
¯
Gk(uk, vk)− Ḡk(uk̂, vk̂) +

¯
Gk(uk̂, vk̂), ∀k̂, k.

From Lemma 2.2, there exists a constant α for which both
¯
Gk and Ḡk are α-Lipschitz.

So

ε− Ḡk(uk̂, vk̂) +
¯
Gk(uk̂, vk̂) ≤ 2α||(uk, vk)− (uk̂, vk̂)||, ∀k̂, k.

From Lemma 2.5, Ḡk(uk̂, vk̂)−
¯
Gk(uk̂, vk̂) = 0, ∀k̂ < k so,

ε

2α
≤ ||(uk, vk)− (uk̂, vk̂)||, ∀k̂ < k,∀k,

which implies there exists no convergent subsequence of iterates (uk, vk). This is a

contradiction of the compactness of U ×V . It must follow then, that no ε > 0 exists

and ḡk −
¯
gk → 0 as k →∞.

Unlike traditional optimisation, where simply a minimum or maximum is sought,

in saddlepoint optimisation, the function g(u, v) can take the value of the saddlepoint

in several places without satisfying the saddlepoint conditions i.e. Definition 2.

Convergence of value functions as their saddle-points is not sufficient to say that a

saddlepoint has been located. We need to show that the algorithm converges to the

saddlepoint value, and that iterates converge toward a saddlepoint as in Definition

3. The following two lemmas give the desired result.

Lemma 2.9.

ε ≥ gv(ū)− gu(v̄) =⇒ (ū, v̄) ∈ Gg(ε), ∀(ū, v̄) ∈ U × V .

Proof. Restating Definition 3, we have

G(ε) = {(û, v̂) ∈ U × V | gv(û)− ε ≤ g(u̇, v̇) ≤ gu(v̂) + ε}.

Substituting ε ≥ gv(ū)− gu(v̄) into the definition yields

gu(v̄) ≤ g(u̇, v̇) ≤ gv(ū),

which is true for all (ū, v̄) ∈ U × V , completing the proof.

Lemma 2.10. Consider the sequence of functions Ḡk and
¯
Gk generated by the al-

gorithm. The set

Gkg :=

{{
arg min
u∈U

max
v∈V

Ḡk−1(u, v)×V
}
∩
{

arg max
v∈V

min
u∈U ¯

Gk−1(u, v)×U
}}
⊆ Gg(ḡk−

¯
gk).

(2.27)

Proof. From Lemma 2.9, for a point (ũ, ṽ) to be a member of Gg(ε), we require that

ε satisfies

ε ≥ gv(ũ)− gu(ṽ). (2.28)

From Corollary 2.1, we have that ḡk ≥ gv(u), ∀u ∈ arg minu∈U maxv∈V Ḡ
k−1(u, v)

and
¯
gk ≤ gu(v), ∀v ∈ arg maxv∈V minu∈U

¯
Gk−1(u, v). So clearly,

ḡk −
¯
gk ≥ gv(ũ)− gu(ṽ), ∀(ũ, ṽ) ∈ Gkg , (2.29)

completing the proof.

Remark 2.1. From Theorem 2.1, we have that ḡk −
¯
gk approaches 0, so Gkg ap-

proaches the set of true saddle points.

In review of this section, we have developed a pair of bounding functions which

when improved under our algorithm, converge to the saddle function value – and

iterates converge to a point in Gg(0).

3 Discussion

In this section, we extend the ideas in the previous section to the more complex

setting of multistage minimax optimisation. As with SDDP, we decompose the

problem into stages and construct upper and lower approximations to the value

functions. We show by induction that nested value function approximations (both

upper and lower) converge at the state trajectories generated by the algorithm.

Consider the set of dynamic programming equations whose elements are indexed

by t ∈ {0, . . . , T − 1} and are given by:

Gt(xt, yt) = min
xt+1,ut

max
yt+1,vt

Ct(xt, yt, ut, vt) +Gt+1(xt+1, yt+1)

s.t. xt+1 = fxt (xt, ut)

yt+1 = f yt (yt, vt)

(xt+1, yt+1) ∈ Xt+1 × Yt+1

(ut, vt) ∈ Ut(xt)× Vt(yt)

(3.1)

with the final value function GT (xT , yT) is given. We are concerned with evaluating

G0(x0, y0) for a given initial state (x0, y0). We require several technical conditions

of the functions and multifunctions that make up the dynamic programming equa-

tions. Briefly, these conditions ensure that each sub-problem is convex and admits

subgradients.

The algorithm works by progressively refining both the upper and lower bound

functions by a series of samples and updates. We will give a high level demonstration

of an iteration (indexed by k) of our algorithm. Because the final value function is

given, we set
¯
Gk
T = GT , Ḡ

k
T = GT , ∀k ∈ N.

Starting at t = 0, solve

¯
θkt = min

xt+1,ut
max
yt+1,vt

Ct(x
k
t , y

k
t , ut, vt) +

¯
Gk−1
t+1 (xt+1, yt+1)

s.t. xt+1 = fxt (xkt , ut)

yt+1 = f yt (ykt , vt)

(xt+1, yt+1) ∈ Xt+1 × Yt+1

(ut, vt) ∈ Ut(xkt)× Vt(ykt),

(3.2)

Move to Ḡt+1 and

¯
Gt+1 at new state

Update current

value functions
Solve Ḡt and

¯
Gt

at current state

Figure 3: High-level algorithm

storing (xkt+1, u
k
t) as the minimisers. Compute the sub gradients (βkt) with respect

to xkt , then define the lower bound value function as

¯
Gk
t (x, y) = min

µ,λ
µ+ 〈λ, y〉

s.t. µ+ 〈λ, ykt 〉 ≥ ¯
θkt + 〈βkt , x− xkt 〉

µ+ 〈λ, yk̂t 〉 ≥ ¯
θk̂t + 〈β k̂t , x− xk̂t 〉, ∀k̂ < k

||λ|| ≤ αy.

(3.3)

Next solve

θ̄kt = max
yt+1,vt

min
xt+1,ut

Ct(xt, yt, ut, vt) + Ḡk−1
t+1 (xt+1, yt+1)

s.t. xt+1 = fxt (xkt , ut)

yt+1 = f yt (ykt , vt)

(xt+1, yt+1) ∈ Xt+1 × Yt+1

(ut, vt) ∈ Ut(xkt)× Vt(ykt),

(3.4)

storing (ykt+1, v
k
t) as the maximisers. Compute the sub gradients (γkt) with respect

to ykt , then define the upper bound value function as

Ḡk
t (x, y) = max

µ,λ
µ+ 〈λ, x〉

s.t. µ+ 〈λ, xkt 〉 ≤ θ̄kt + 〈γkt , y − ykt 〉

µ+ 〈λ, xk̂t 〉 ≤ θ̄k̂t + 〈γk̂t , y − yk̂t 〉, ∀k̂ < k

||λ|| ≤ αx.

(3.5)

Repeat the above with t ← t + 1 until t = T − 1. That concludes an iteration of

the algorithm. Figure 3 gives a diagrammatic representation of an iteration.

The proof of convergence of our algorithm seeks to construct a similar contradic-

tion to Theorem 2.1. However, simply applying Theorem 2.1 at every stage is not

sufficient for convergence as the theorem requires that the proceeding value func-

tions to have converged; this is only true at stage T . Our proof relies on backward

induction with convergence of the value functions at stage T forming the base case.

Each preceding pair of bounds will converge in the limit as long as the future bounds

converge in the limit.

Figure 4 shows how nested representations of value functions compound the

bound gap. Notice the bound gap between the bounding functions is necessarily

TT − 1. . .10

Bound gap

Figure 4: Nested bounding functions

zero at the final stage; this is because both the upper and lower estimations are

equal to the true value function at this point. After each iteration of the algorithm,

we are able to close the bound gap at all vertices until the gap is sufficiently small

at t = 0 as in Figure 5.

TT − 1. . .10

Figure 5: Converged bound gap

As a final note, we can further adapt this algorithm for multistage stochastic

minimax problems whose dynamic programming equations are given by

Gn(xn, yn) = min
xm,un

max
ym,vn

Cn(xt, yt, ut, vt) + E[Gm(xm, ym)]

s.t. xm = fxm(xn, un), ∀m ∈ R(n),

ym = f ym(yn, vn), ∀m ∈ R(n),

(xm, ym) ∈ Xm × Ym, ∀m ∈ R(n),

(un, vn) ∈ Un(xn)× Vn(yn).

(3.6)

Various sampling techniques exists to solve these problems; with an SDDP-like

random sampling technique, we can obtain convergence w.p.1, while with the sam-

pling technique used in [Baucke et al., 2017], we can achieve deterministic conver-

gence.

References

Regan Baucke, Anthony Downward, and Golbon Zakeri. A deterministic algo-

rithm for solving multistage stochastic programming problems. 2017. URL

http://www.optimization-online.org/DB FILE/2017/07/6138.pdf.

J.E. Kelley. The cutting-plane method. Journal of the Society for Industrial and

Applied Mathematics, 8(4):703–712, 1960.

A. B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic

programming and related methods. Operations Research Letters, 36(4):450–

455, 2008. ISSN 01676377. doi: 10.1016/j.orl.2008.01.013.

