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Abstract

The stochastic programming framework for optimising decision-making assumes a

predetermined information structure, where certain information is inevitably re-

vealed at fixed time stages regardless of the decisions made. This assumption is not

valid for problems with endogenous uncertainty, in which the sequence of informa-

tion revelation is not fixed beforehand and is instead governed by model decisions. In

this paper we present a comprehensive framework for defining information structures

for such programs, based on modelling decision-dependent information discovery in

an exploration-exploitation paradigm. This enables modellers to keep track of in-

formation flows and ensure that the desired causality between model decisions and

information revelation is modelled appropriately. This framework is applied on a

SMIP optimising well placement for a geothermal reservoir, and results demonstrat-

ing the effect of the information structure are discussed.

Key words: stochastic programming, endogenous uncertainty, decision-dependent

information revelation, exploration-exploitation.

1 Introduction

Uncertainty in stochastic programming (SP) problems is modelled by how the sce-

narios relate to each other (the information structure), and the assumed probability

distribution over the scenarios (our belief state). Typically the uncertainty is treated

as being static, in that both the information structure (the sequence of information

revelation about the random variables) and the belief state are assumed to be fixed,

regardless of the decisions we make. In other words, we do not anticipate what the

outcomes of the random variables will be right from the start but we do anticipate

when they will be realized, and we assume the belief state remains constant over

all stages. In this setting the uncertainty in a problem is exogenous - it applies the

same regardless of the decisions we take and is not affected by them. By contrast

endogenous uncertainty is that which is affected by the decisions we are optimising.



This terminology was first introduced in the SP literature by (Jonsbr̊aten 1998),

who worked on optimising petroleum field exploitation under reservoir uncertainty.

Endogenous uncertainty is generally classified into two types in the literature: that

where model decisions affect the probability distribution of the uncertain param-

eter outcomes or scenarios (type 1), and that where they affect the realization of

the random variable outcomes (type 2). With type 1 endogenous uncertainty some

decisions can alter our belief state, and with type 2 they determine if and when

the random variables are realized. This distinction was made by (Goel and Gross-

mann 2006) who first proposed an explicit framework and solution method aimed

at tackling type 2 endogenous uncertainty.

These authors and their colleagues have also put out a series of papers modelling

this kind of uncertainty for offshore oil and gas field drilling problems. Another re-

lated application that was modelled in this manner is open-cast pit mining (Boland,

Dumitrescu, and Froyland 2008). We will provide a detailed and up to date dis-

cussion of the literature on endogenous uncertainty in stochastic optimisation and

related fields in a future paper; for now we refer interested readers to (Apap and

Grossmann 2017) for a review of previous work on the subject. However the ex-

amples mentioned serve to show that it is often preferrable to model endogenous

uncertainty in drilling and excavation applications. This is because geological or

reservoir uncertainty is only resolved once the subsurface is actually investigated. If

the decisions regulating this are the ones being optimised, then the information is

only revealed as a result of those model decisions, and not otherwise. This is what

motivates our work as well.

Previously we have developed a reduced order method for efficiently forecast-

ing production outcomes for different combinations of wells from a small number of

geothermal reservoir simulations (Adiga, O’Sullivan, and Philpott 2019). We showed

that the forecasts generated using this method can be converted into NPV contribu-

tions and used in MIP models for optimising the selection of geothermal production

wells (Adiga, O’Sullivan, and Philpott 2018). When the reduced order method is

applied with an ensemble of different models (calibrations) of the same reservoir,

the forecasts can be used in a SMIP hedging over different scenarios representing

the calibrations. The SMIP models presented in (Adiga, O’Sullivan, and Philpott

2018) assumed a fixed information structure and treated the reservoir uncertainty

as exogenous. In this paper we focus on modelling type 2 endogenous uncertainty in

the SP framework, and develop a general template formulation for doing this from

an exploration-exploitation perspective.

We first build up the key ingredients of this general formulation using an example

Newsvendor problem. We then apply this for the geothermal well placement prob-

lem presented in (Adiga, O’Sullivan, and Philpott 2018), comparing the model with

the original one, and demonstrate the effect of modelling information revelation in

this way as a proof of concept. We do not go into detail on the specific problem

data and results for the examples we present in terms of comparing solution met-

rics or policies. Rather the emphasis is on the modelling aspect, showing how this

impacts the information structure of a problem and why it is important. Our pro-

posed framework allows modellers to keep track of information flows and make sure

that the appropriate causality between model decisions and information revelation is

enforced. This can be difficult for large and complicated problems. Previous treat-

ments of such problems tend not to elaborate on the details of modelling the problem



and ensuring the information structure is correct, instead focusing on eliminating

non-anticipativity constraints (NACs) for model reduction and decomposition-based

solution methods.

2 Motivating Application

We now discuss the well placement problem from (Adiga, O’Sullivan, and Philpott

2018). We do not go into detail on the formulation, focusing just on the information

structure. An ensemble of reservoir models was developed for the Kerinci geothermal

system in Indonesia, and NPV forecasts were calculated for a set of candidate pro-

duction wells from all of them, by applying the reduced order method from (Adiga,

O’Sullivan, and Philpott 2019) on each calibration. The reservoir is bounded by

four intersecting faults: two running vertically down the western and eastern ends,

and two going across the northern and southern ends. The calibrations differ in the

locations of deep upflows, which are boundary conditions defining the upward injec-

tion of hot fluid into the reservoir from below, but have the same physical structure

and grid discretization. They were constructed starting from one particular calibra-

tion of the Kerinci reservoir and varying the locations of two adjacent deep upflows,

which were moved along the eastern and western faults, defining a different calibra-

tion for each location and giving 16 calibrations in total. Calibrations 1 to 8 had

the deep upflows on the western fault, with them being at the top of the fault in

calibration 1 and moved down the fault by one block from the preceding calibration

till calibration 8 in which they were at the bottom of the fault. Likewise the upflows

were moved down the eastern fault in calibrations 9 to 16.

The stochastic process is defined by the realization of random variables, which in

this problem model the deep upflow locations. We considered a multistage problem

with T = 5 stages and four random variables modelling the location of the deep

upflows in each calibration, given in the vector ξ(ω) = [ξ1, ξ2, ξ3, ξ4]. They are

defined as follows.

ξ1 =

{
W if the deep upflows lie on the western fault

E if they lie on the eastern fault
,

ξ2 =

{
N if the deep upflows lie on the northern half of the fault selected by ξ1

S if they lie on the southern half
,

ξ3 =

{
N if the deep upflows lie on the northern half of those selected by ξ2

S if they lie on the southern half
,

ξ4 =

{
N if the deep upflows are on the northern half of the those selected by ξ3

S if they lie on the southern half
.

The scenarios represent each calibration in the ensemble, being defined by every

combination of these random variable outcomes. The full scenario enumeration is

given in Table 1. We assume the random variables are realized sequentially, after

each of the first four stages. Since each random variable has two possible outcomes,

the branching after each stage in the scenario tree is binary, shown in Figure 1.



Table 1: Kerinci ensemble scenarios

Scenario Random outcomes Scenario Random outcomes

ω1 (ξ1 = W, ξ2 = N, ξ3 = N, ξ4 = N) ω9 (ξ1 = E, ξ2 = N, ξ3 = N, ξ4 = N)

ω2 (ξ1 = W, ξ2 = N, ξ3 = N, ξ4 = S) ω10 (ξ1 = E, ξ2 = N, ξ3 = N, ξ4 = S)

ω3 (ξ1 = W, ξ2 = N, ξ3 = S, ξ4 = N) ω11 (ξ1 = E, ξ2 = N, ξ3 = S, ξ4 = N)

ω4 (ξ1 = W, ξ2 = N, ξ3 = S, ξ4 = S) ω12 (ξ1 = E, ξ2 = N, ξ3 = S, ξ4 = S)

ω5 (ξ1 = W, ξ2 = S, ξ3 = N, ξ4 = N) ω13 (ξ1 = E, ξ2 = S, ξ3 = N, ξ4 = N)

ω6 (ξ1 = W, ξ2 = S, ξ3 = N, ξ4 = S) ω14 (ξ1 = E, ξ2 = S, ξ3 = N, ξ4 = S)

ω7 (ξ1 = W, ξ2 = S, ξ3 = S, ξ4 = N) ω15 (ξ1 = E, ξ2 = S, ξ3 = S, ξ4 = N)

ω8 (ξ1 = W, ξ2 = S, ξ3 = S, ξ4 = S) ω16 (ξ1 = E, ξ2 = S, ξ3 = S, ξ4 = S)

Figure 1: Scenario tree for (SP1)

The branching after the first stage corresponds to the realization of ξ1 and tells

us whether the deep upflows are on the western fault or the eastern fault. Practically

this represents finding out whether the productive areas of the reservoir are near the

western fault or the eastern fault. For the two nodes in the second stage, NACs

link decisions between the scenarios in which the deep upflows are on the west (ω1

through ω8), and those in which they are on the east (ω9 through ω16). The branching

after the second stage is due to the realization of ξ2, which reveals whether the deep

upflows are on the northern or southern end of each fault. This narrows down the

exact location of a productive area, and leads to four nodes at the third stage, which

group scenarios by whether the deep upflow is on the northern end of the western

fault (ω1 through ω4), the southern end (ω5 through ω8), the northern end of the

eastern fault (ω9 through ω12), or the southern end (ω13 through ω16). This process

continues till the last random variable ξ4 is realized, causing the branching into the

leaf nodes after the fourth stage and leading to full information for each scenario.

The NACs enforcing this information structure are given by:

x
(1)
i (ω) = x̄

(1)
i , ω ∈ Ω,

x
(2)
i (ω) = x̄

(2)
i (ξ1), ω ∈ Ω,

x
(3)
i (ω) = x̄

(3)
i (ξ1, ξ2), ω ∈ Ω,

x
(4)
i (ω) = x̄

(4)
i (ξ1, ξ2, ξ3), ω ∈ Ω,

(ISP1)

where x
(t)
i (ω) is the decision to drill a well to feedzone (block) i in scenario ω ∈ Ω and

stage t. We do not detail the other constraints that define the problem dynamics.

The objective is to maximise the NPV return from the selected wells, with the

decision to select a well and the decision to drill it being one and the same. See

(Adiga, O’Sullivan, and Philpott 2018) for more details.



3 Newsvendor Example

Consider a Newsvendor problem with n = 3 magazine titles, each with its own

cost, selling price, and inventory. All magazines must be procured in advance of

demand occurring, and within an overall budget b. We denote the set indexing

the magazines by Q = [1, . . . , n]. Each magazine i ∈ Q costs ci to procure and

can be sold for a price pi or returned for a refund ri. The demands are given

by the random vector ξ(ω) = [ξ1, . . . , ξn], which has a multi-variate probability

distribution with finite support, giving a finite set of scenarios ω ∈ Ω. Let the

demand ξi for each magazine i have N possible realizations ξi ∈ Ξi, each with a

probability P(ξi) of occuring. The scenarios define every combination of demand

outcomes ω : (ξ1, . . . , ξn) ∈
n∏
i=1

Ξi, giving Nn possible realizations of ξ(ω). We also

assume the demands are independent, and therefore each scenario ω has probabilility

P(ω) = P(ξ1, . . . , ξn) =
n∏
i=1

P(ξi) of occuring.

The optimization problem faced by the newsvendor is a two-stage stochastic

program that can be formulated as follows.

(NVPI) :

min
∑

ω∈Ω P(ω)
∑3

i=1 (cixi(ω)− piyi(ω)− riwi(ω))

s.t. yi(ω) ≤ ξi, i ∈ Q;ω ∈ Ω,

yi(ω) + wi(ω) = xi(ω), i ∈ Q;ω ∈ Ω,∑3
i=1 cixi(ω) ≤ b, ω ∈ Ω,

xi(ω) = u1i(ξ2, ξ3), i ∈ Q;ω ∈ Ω,

xi(ω) = u2i(ξ1, ξ3), i ∈ Q;ω ∈ Ω,

xi(ω) = u3i(ξ1, ξ2), i ∈ Q;ω ∈ Ω,

xi(ω), yi(ω), wi(ω) ≥ 0, i ∈ Q;ω ∈ Ω.

where xi(ω), yi(ω) and wi(ω) are the quantities of each magazine to be purchased,

sold and returned in each scenario. We define (ξ−j) as the (n − 1)-tuple of all ran-

dom variables (ξ1, . . . , ξj−1, ξj+1, . . . , ξn), ignoring ξj. Here the variables uji(ξ−j) =

uji(ξ1, . . . , ξj−1, ξj+1, . . . , ξn) must take the same value for all realizations of ξj. Thus

the constraint xi(ω) = uji(ξ−j) for magazine i implies that purchases xi(ω) cannot

vary with the outcome of demand ξj. Including these constraints for each demand

ξj ensures that xi(ω) is the same purchase decision for every ω ∈ Ω.

The advantage of the formulation (NVPI) is that it enables information revela-

tion for any combination of demands. Relaxing the constraint xi(ω) = u1i(ξ2, ξ3)

gives a model that can adapt to ξ1 without adapting to other ξj. Then relaxing

constraint xi(ω) = u2i(ξ1, ξ3) reveals ξ2 as well. Choosing different sets of NACs to

relax gives information about different combinations of demand outcomes, and iter-

atively relaxing different NACs gives different sequences of information revelation.

Alternatively, we can include exploration decisions which can relax the constraints,

modelled as conditional NACs (CNACs), within the formulation. These actions are

modelled as binary variables, defined below.

zi =

{
1 if demand for magazine i is investigated

0 otherwise
.

They are costed at ei for each magazine i, and must be made within an exploration

budget b2. With these exploration decisions and costs we formulate the following



three-stage information acquisition model for the three magazine example.

(NVIA) :

min
∑

ω∈Ω P(ω)
∑3

i=1

(
cixi(ω)− piyi(ω)

− riwi(ω) + eizi
)

s.t. yi(ω) ≤ ξi, i ∈ Q;ω ∈ Ω,

yi(ω) + wi(ω) = xi(ω), i ∈ Q;ω ∈ Ω,∑3
i=1 cixi(ω) ≤ b1, ω ∈ Ω,∑3
i=1 eizi(ω) ≤ b2, ω ∈ Ω,

|xi(ω)− u1i(ξ2, ξ3)| ≤ Mz1, i ∈ Q;ω ∈ Ω,

|xi(ω)− u2i(ξ1, ξ3)| ≤ Mz2, i ∈ Q;ω ∈ Ω,

|xi(ω)− u3i(ξ1, ξ2)| ≤ Mz3, i ∈ Q;ω ∈ Ω,

xi(ω), yi(ω), wi(ω) ≥ 0, i ∈ Q;ω ∈ Ω,

uji(ξ−j) ≥ 0, ξk ∈ Ξk; k ∈ Q \ j; i, j ∈ Q,
zi ∈ [0, 1], i ∈ Q.

We solved different instances of this model with slightly different problem data.

Based on the value added by discovering a demand and cost of doing so, different

exploration decisions are selected, giving different resulting scenario trees. The trees

for two instances are given in Figure 2. In Instance 1 of the problem the CNACs

at the second stage enforce non-anticipativity only over scenarios with the same

outcome of demand ξ3. This is because that is the demand that is discovered in the

first stage (z3 = 1), thereby breaking non-anticipativity over the different outcomes

of ξ3. The constraints xi(ω) ≤ u3i(ξ1, ξ2)+Mz3 and xi(ω) ≥ u3i(ξ1, ξ2)−Mz3 become

xi(ω) ≤ u3i(ξ1, ξ2) +M and xi(ω) ≥ u3i(ξ1, ξ2)−M respectively, allowing xi(ω) and

u3i(ξ1, ξ2) to be different for all ω ∈ Ω. Then at the third stage all the demands have

been realized and the sale and refund decisions are fully anticipative in each scenario.

Similarly, in Instance 2 of the problem the CNACs enforce non-anticipativity over

scenarios sharing the same outcomes for both ξ1 and ξ3, as those are the demands

that are investigated in the first stage (z1, z3 = 1).

(a) Instance 1

(b) Instance 2

Figure 2: (NVIA) scenario trees for each problem instance

While the scenario trees for the two problem instances look similar, the nodes

at the second stage are different, covering different sets of scenarios in each tree.

The scenario trees that emerge from the exploration decisions are different for the

different instances of the problem depending on the data chosen for the costs ei.

Thus the resulting scenario tree is dependent on the solution itself, specifically on



the exploration decisions. A helpful way to think about this is that the constraints

define a scenario fan containing a number of possible trees, and which of these trees

materializes depends on the value of the decision variables that the CNACs are con-

tingent upon in the optimal solution. A scenario tree is just a visual depiction of

the information structure of a problem. This distinction applies to the information

structures as well. A constraint formulation with CNACs defines an underlying in-

formation structure in which the relationships between the decision variables govern

the information flows that can manifest in the solution, and the particular resulting

information structure that emerges depends on the decisions in the optimal solution.

The information structure of this problem is adaptive in later stages to previously

revealed information. By solving both the exploration (z) and exploitation (x, y,

w) decisions together in (NVIA), we can optimise the decision variables and the

resulting information structure at the same time.

Note that the exploration decisions only gave a subset of magazine demand out-

comes to discover, not a sequence. This is because all the exploration decisions are

made at the same stage with the same knowlege (no information in the first stage).

(NVIA) was a three-stage model with the exploration decisions z being made in the

first stage, the purchase decisions x in the second stage and the sale and return de-

cisions y and v in the third stage. If we extend this so the exploration decisions can

be made in multiple stages and apply the information constraints on the exploration

variables as well, then we get a model in which the discovery of random variable

outcomes follows an optimal policy that can give a different sequence of exploration

depending on the outcomes of the investigation. For example, we could get perfect

information on the demand ξ1 and then obtain information on ξ2 only if ξ1 is low.

We can seek a solution with recourse in the exploration decisions as well, as opposed

to that given by (NVIA) which only allowed recourse in the exploitation decisions.

We now consider a model with three exploration stages where we can discover de-

mand information followed by two exploitation stages where we make the purchase,

sale and return decisions. We call this model (MAIA). It gives a policy consisting of

a series of discovery decisions z followed by the purchase, sale and return decisions

x, y and z in each scenario ω. If the chosen exploration decisions remove all demand

uncertainty, then xi(ω) will be the Wait-and-See purchase solution for each scenario

ω. Alternatively the purchase decisions will be adapted to the history of informa-

tion that has been accrued, without anticipating demand that is still unknown. For

brevity we do not present the formulation for (MAIA), but we present the resulting

scenario trees from solving the same two problem instances, given in Figure 3.

In instance 1 the CNACs at the second stage enforce non-anticipativity over

all the scenarios as none of the demands are investigated in the first stage and

therefore no information is obtained. Then the CNACs at the third stage enforce

non-anticipativity over scenarios that share the same outcome for demand ξ3, due

to it being discovered in the second stage. This is also the case in the fourth stage

for scenarios with the medium and high outcomes of ξ3 (ξ3 ∈ [8, 9]), but for the

scenarios with the low outcome the decision to discover ξ1 in the third stage breaks

non-anticipativity over ξ1. Then non-anticipativity applies over the scenarios sharing

the same outcomes for ξ1 and with ξ3 = 6. The purchase decisions are therefore

adapted to this history of information revelation.

In Instance 2 the second stage CNACs enforce non-anticipativity over scenarios

with the same outcome of demand ξ1, as it is discovered in the first stage. The



CNACs at the third stage make the scenarios sharing the same outcomes for both

ξ1 and ξ3 non-anticipative, due to demand ξ3 being discovered in the second stage.

This remains the case in the fourth stage for most of the scenarios. However, for

those with the low and medium outcomes of ξ1 and the low outcome of ξ3, the

decision to discover ξ2 in the third stage breaks non-anticipativity over ξ2 as well in

the fourth stage, giving full information for those scenarios. The purchase decisions

are adapted to this history of information revelation.

(a) Instance 1

(b) Instance 2

Figure 3: (MAIA) scenario trees for each problem instance

The distinction between the (MAIA) and (NVIA) solutions is that now explo-

ration decisions can also be adapted to the information revealed from previous explo-

ration decisions, giving different future exploration decisions for different outcomes

of previous exploration. This can be seen in the scenario trees, which are symmetric

for the (NVIA) solutions (see Figure 2), while those for the (MAIA) solutions trees

branch asymmetrically. Depending on the previous decisions, there are is no branch-

ing after some nodes (no information revealed) in some parts of the trees, and child

sub-trees following from some nodal branching are different as they follow different

sequences of later stage exploration decisions.

4 Prescriptive Information Revelation Models

We call these kind of models Prescriptive Information Revelation Models (PIRMs),

and provide a general formulation for modelling their information constraints. Con-

sider a problem with two types of decisions, exploitation decisions x and exploration

decisions z, and scenarios ω ∈ Ω. We denote by (ξ−J) the tuple of random variables

(ξj), j ∈ [1, . . . , n] \ J . Let i ∈ I be the indices defining the subset of exploitation

decisions xti(ω) on which the NACs are applied, with t ∈ [1, . . . , T ] denoting the

stage a decision is made in. For a collection J of such subsets of random variables

for which constraints must be enforced, we can write the first stage constraints as

x1
i (ω) = u1

J,i(ξ−J), i ∈ I; J ∈ J ;ω ∈ Ω.



From the second stage onwards the NACs are conditioned upon previous explo-

ration decisions. There may be different exploration actions that can relax these

constraints for different scenarios. Therefore the sets of exploration actions need to

be defined in terms of both the random variables over whose outcomes they will

relax a NAC if chosen (ξj, j ∈ J), and the specific random variable outcomes corre-

sponding to the scenarios for which the constraint will be relaxed. This is defined by

a particular outcome ξ̂k for a random variable indexed by k. There may be multiple

random outcomes defining the subset of scenarios for which decisions relax these

constraints, and so we can define each set of exploration decisions as zp, p ∈ PJ,K.

Here K is the set of tuples containing the indices of the random variables and their

particular outcomes which correspond to this subset of scenarios.

A NAC over the random variables ξj, j ∈ J could be relaxed by different ex-

ploration actions for different subsets of scenarios. Therefore we define by KJ the

collection of sets K, with the tuples in each K defining a particular subset of sce-

narios for which the NAC over the random variables defined in J will be relaxed if

any exploration decision zp, p ∈ PJ,K is selected. This gives the following general

definition for CNACs in the second stage and onwards.

∣∣∣xti(ω)− utJ,i(ξ−J)
∣∣∣ ≤M

t−1∑
s=1

∑
p∈PJ,K

zsp(ω), i ∈ I; t ∈ [2, . . . , T ];

ξk = ξ̂lk; ξm ∈ Ξm;m ∈ [1, . . . , n] \K; k ∈ K; (k, l) ∈ K;K ∈ KJ ; J ∈ J .

These constraints do not apply over all scenarios ω ∈ Ω because they are defined

for the specific realizations ξk = ξ̂lk, (k, l) ∈ K. As such, the constraints only apply

over ξm ∈ Ξm,m ∈ [1, . . . , n] \K, where K indexes the random variables which are

defined in K (k ∈ K, (k, l) ∈ K). The set K is defined in relation to K and not

in relation to J ; K and J can be overlapping in [1, . . . , n] or disjoint. The same

information structure can be applied on the exploration variables as well.

5 Applying the PIRM for the Kerinci reservoir problem

We can use the PIRM framework to model the information structure of the problem

with endogenous uncertainty, defining the information constraints on the collection

J = {[1], [2], [3], [4]}. Then, the linking variables uJ in the constraints for each

J ∈ J are functions of all the random variables except those that the respective

constraints apply over and those that depend on them, (ξ−J). In the first stage the

NACs are equality constraints and cannot be relaxed, and as such the constraints

for J ∈ J \ [1] are superfluous and may be omitted, since applying x
(1)
i (ω) = u

(1)
[1],i

is sufficient. However the constraints need to be applied conditionally for all J ∈ J
from the second stage onwards, since any of them can be relaxed in any stage.

Adding these as pairs of CNACs results in the set of information constraints given

overleaf.

The constraints from the second stage onwards can be relaxed by various drilling

decisions indexed in PJ,K,K ∈ KJ for each J ∈ J in any stage, allowing the random

variables to be realized at any stage after the first. The set of candidate feedzones

to which wells can be drilled, C, is partitioned into subsets of feedzones that when

drilled to reveal different pieces of information. Let CW contain the feedzones along

the western fault and CE those on the eastern fault. We denote both of them by Cξ1 ,



with realization of ξ1 specifying which one. Then let CNW contain the feedzones in

the northern half of the western fault and CSW be the set of those in the southern

half. Similarly we define CNE and CSE. We denote these sets by Cξ2ξ1 . Continuing

this partitioning further, we define the sets Cξ3ξ2ξ1 and Cξ4ξ3ξ2ξ1 .

x
(1)
i (ω) = u

(1)
[1],i, i ∈ C;ω ∈ Ω,∣∣∣∣x(t)

i (ω)− u(t)
[1],i

∣∣∣∣ ≤∑t−1
s=1

∑
p∈PJ,K

x
(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξk = ξ̂lk; ξm ∈ Ξm;

m ∈ Q \K; k ∈ K; (k, l) ∈ K;K ∈ K[1],∣∣∣∣x(t)
i (ω)− u(t)

[2],i(ξ1)

∣∣∣∣ ≤∑t−1
s=1

∑
p∈PJ,K

x
(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξk = ξ̂lk; ξm ∈ Ξm;

m ∈ Q \K; k ∈ K; (k, l) ∈ K;K ∈ K[2],∣∣∣∣x(t)
i (ω)− u(t)

[3],i(ξ1, ξ2)

∣∣∣∣ ≤∑t−1
s=1

∑
p∈PJ,K

x
(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξk = ξ̂lk; ξm ∈ Ξm;

m ∈ Q \K; k ∈ K; (k, l) ∈ K;K ∈ K[3],∣∣∣∣x(t)
i (ω)− u(t)

[4],i(ξ1, ξ2, ξ3)

∣∣∣∣ ≤∑t−1
s=1

∑
p∈PJ,K

x
(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξk = ξ̂lk; ξm ∈ Ξm;

m ∈ Q \K; k ∈ K; (k, l) ∈ K;K ∈ K[4].
(ISP2)

Now drilling to feedzones in the northernmost two columns where deep upflows

can be on the western fault should reveal four distinct pieces of information about the

deep upflow locations. These are: if they are on the western fault or not (revealing

the outcome of ξ1) since the feedzones are indexed in CW, if they are on the northern

half of the western fault or not (revealing the outcome of ξ2 for ξ1 = W) since the

feedzones are indexed in CNW, if they are on the northern quarter on the western

fault or not (revealing the outcome of ξ3 for ξ1 = W, ξ2 = N), since the feedzones

are indexed in CNNW, and if they are on the northern eighth of the western fault

or not (revealing the outcome of ξ4 for ξ1 = W, ξ2, ξ3 = N) since the feedzones are

indexed in CNNNW.

To model this information revelation in the CNACs from the second stage on-

wards, we define the collections K[j] = {[(1, l1), . . . , (j, lj)], l1 ∈ L1, . . . , lj ∈ Lj}, j ∈
Q, which pick out every combination of outcomes of the respective random vari-

able and those on whose outcomes its realization depends. For J = [1], the col-

lection K[1] = {[(1, 1)], [(1, 2)]} picks out both the outcomes of ξ1. For J = [2],

K[2] = {[(1, 1), (2, 1)], [(1, 1), (2, 2)], [(1, 2), (2, 1)], [(1, 2), (2, 2)]} picks out every com-

bination of outcomes of ξ1 and ξ2. Similarly we define collections K[3] and K[4]. Then

for example, choosing a decision indexed in P[3],[(1,1),(2,2),(3,1)] will relax the constraints

over the outcomes of ξ3 for the scenarios with ξ1 = W, ξ2 = S, ξ3 = N (ω5 and ω6),

splitting them from the scenarios with ξ1 = W, ξ2, ξ3 = S (ω7 and ω8).

We then assign each of the partitioned subsets as the set indexing decisions that

relax a particular constraint, PJ,K, for different K ∈ KJ . For J = [1] we assign

P[1],[(1,1)] = CW and P[1],[(1,2)] = CE as the sets indexing decisions that can relax the

constraints over ξ1, and for J = [2] we assign P[2],[(1,1),(2,1)] = CNW, P[2],[(1,1),(2,2)] =

CSW, P[2],[(1,2),(2,1)] = CNE and P[2],[(1,2),(2,2)] = CSE as those indexing decisions that

can relax the constraints over ξ2. In general we assign P[j],[(1,l1),...,(j,lj)] = Cξ̂j ...ξ̂1 as the

set indexing the decisions that can relax a constraint over ξj for the scenarios with

ξ1 = ξ̂1, . . . , ξj = ξ̂j, where ξ̂i denotes the realization indexed by li of the random

variable ξi. As another example, P[4],[(1,2),(2,1),(3,1),(4,2)] = CSNNE is the set indexing

decisions which can relax the constraint over ξ4 for ξ1 = E, ξ2, ξ3 = N and ξ4 = S



(scenario ω10), splitting it from the scenario with ξ4 = N for the same outcomes of

the other random variables (ω9).

Using these definitions, we can define the specific information constraints for the

second stage and onwards. The two pairs of constraints given below are for J = [1].

The first is for K = [(1, 1)], applying for scenarios ω1 through ω8. The second is for

K = [(1, 2)], applying for scenarios ω9 through ω16.∣∣∣∣x(t)
i (ω)−u(t)

[1],i

∣∣∣∣ ≤ t−1∑
s=1

∑
p∈CW

x(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξ1 = W; ξm ∈ [N, S];m ∈ Q\[1],

∣∣∣∣x(t)
i (ω)−u(t)

[1],i

∣∣∣∣ ≤ t−1∑
s=1

∑
p∈CE

x(s)
p (ω), i ∈ C; t ∈ [2, . . . , T ]; ξ1 = E; ξm ∈ [N, S];m ∈ Q\[1].

Likewise we do this for J ∈ [2, 3, 4], using the other collections to assign the

relevant partitioned subsets of decisions to the appropriate constraints. We do not

enumerate them but all of these information constraints, along with the first stage

ones given before, are collectively denoted by the set (ISP2). They define the infor-

mation structure for the problem given that the reservoir uncertainty is endogenous

and that each drilling decisions reveals specific information about each random vari-

able. Along with the constraints defining the problem dynamics and the objective

function, which remain the same as in the original problem, they define the the

formulation (SP2). Solving it gives the resulting scenario tree shown in Figure 4.

Figure 4: Resulting scenario tree for (SP2) solution

The first stage decision in all scenarios is the same as in the (SP1) solution. It is

to drill in the northeast of the reservoir, near the deep upflow locations in scenarios

ω9 and ω10. In (SP1) we then get information only on ξ1, allowing the second stage

decisions to adapt to its outcome (splitting scenarios ω1 to ω8 from scenarios ω9 to

ω16). However the act of drilling in the northeast in the (SP2) solution means that

not only is ξ1 revealed, but ξ2 is revealed for ξ1 = E (splitting scenarios ω9 to ω12

from scenarios ω13 to ω16), ξ3 is revealed for ξ1 = E and ξ2 = N (splitting scenarios

ω9 and ω10 from ω11 and ω12), and ξ4 is revealed for ξ1 = E, ξ2 = N and ξ3 = N

(splitting scenarios ω9 and ω10 from each other). This is because the chosen drilling

decision is in the sets CE, CNE, CNNE, CNNNE and CSNNE. Therefore choosing it

reveals perfect information on ξ1, on ξ2 for ξ1 = E, on ξ3 for ξ1 = E and ξ2 = N, and

on ξ4 for ξ1 = E and ξ2, ξ3 = N.

The second stage decision in the (SP1) solution is then to select and drill in

the northwest in scenarios with the outcome ξ1 = W (ω1 to ω8), and again in the

northeast in scenarios with ξ1 = E (ω9 to ω16). However in the (SP2) solution we

can now make decisions independently for scenarios with different outcomes of all

the random variables revealed in the first stage. Thus the selection for the first eight



scenarios (ξ1 = W) is the same as in (SP1), but is quite varied for the rest. The wells

drilled in scenarios ω9 (ξ1 = E, ξ2,ξ3,ξ4 = N) and ω10 (ξ1 = E, ξ2,ξ3 = N, ξ4 = S)

are different, even thought they both target the northeast of the reservoir. This is

due to the more local information revealed about this area in the first stage. For

scenarios ω11 and ω12 (ξ1 = E, ξ2 = N, ξ3 = S) the decision is to drill in the middle

of the eastern fault, and for scenarios ω13 to ω16 (ξ1 = E, ξ2 = S) the decision is to

drill in the southeast.

These choices then reveal different pieces of information going forward. The

decision to drill in the northwest in scenarios ω1 to ω8 reveals the outcome of ξ2 for

ξ1 = W (splitting scenarios ω1 to ω4 from ω5 and ω8) since it is indexed in CNW.

It reveals the outcome of ξ3 for ξ1 = W and ξ2 = N (splitting scenarios ω1 and ω2

from ω3 and ω4) and the outcome of ξ4 for ξ1 = W, ξ2 = N and ξ3 = N (splitting

scenarios ω1 and ω2 from each other) as well, since it is also indexed in the sets

CNNW and CNNNW respectively. Similarly, drilling in the middle of the eastern fault

in scenarios ω11 and ω12 reveals the outcome of ξ4 for ξ1 = E, ξ2 = N and ξ3 = S

(splitting scenarios ω11 and ω12) since that decision is indexed in CNSNE. Likewise,

drilling in the southeast in scenarios ω13 to ω16 reveals the outcome of ξ3 for ξ1 = E

and ξ2 = S (splitting scenarios ω13 and ω14 from ω15 and ω16) since it is indexed in

CNSE, and the outcome of ξ4 for ξ1 = E, ξ2 = S and ξ3 = N (splitting scenarios ω15

and ω16) since it is indexed in CNNSE and CSNSE.

This process continues through the stages, giving different sequences of infor-

mation discovery for each scenario which are determined by previous decisions. In

general, the (SP2) solution makes more use of information than that of (SP1), with

the clustering of selected feedzones in the vicinity of the deep upflows for each sce-

nario happening earlier on. This is because more information is revealed in earlier

stages, allowing more adaptive decisions to be made earlier on. As a result, the

objective value of the (SP2) solution is higher than that of the (SP1) solution.
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