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Abstract

One of the most important concepts in production planning is that of the establishment of
an overall or aggregate production plan.  In this paper we consider this problem for a
manufacturing plant.  Our aim is to meet the pre-specified demand taking into account
decisions concerning when and how many to hire and fire, how much inventory to hold,
when to use overtime and undertime, as well as product families and set-up times.  We
develop a new dynamic model of this issue.  The model turns out to be a discrete-time
positive system with side linear, and logical and binary set-up constraints.  Some
interesting new characterizations of production systems important for the objectives of
planning and control appear in the model.  On the basis of the model we formulate and
discuss a discrete-time positive system optimal control problem for capacity planning and
provide a number of interesting insights into capacity planning and at the same time
address some open problems.

1 Introduction

One of the most important concepts in production planning is that of the establishment of
an overall or aggregate production plan.  The basic issue is, given a set of production



demands stated in some common unit, what levels of resources should be provided in
each period?  There has been a long history of academic research on aggregate planning,
resulting in many (static) mathematical programming models and in a variety of
heuristics, see Berry at al.[1992].  However, as the firms attempt to implement
manufacturing planning and control systems they find serious deficiencies in these models
and heuristics.  We attempt to overcome some of these drawbacks with a new dynamic
approach motivated not only by the need for policies but also by the need to incorporate
time and open the way for a deductive analysis.

Our aim is to meet a pre-specified demand taking into account decisions concerning
product families and the set-up times, when and how many to hire and fire, how much
inventory to hold, and when to use overtime and undertime.  Some of these
characteristics do not appear at all or do not appear together in the models considered in
[2, 4].  We develop a new dynamic model of the basic issue, which turns out to be a
discrete-time positive system with side linear, and logical and binary set-up constraints.
Some interesting new characterizations of production systems important for the
objectives of planning and control appear in the model.  On the basis of this model we
formulate and discuss a discrete-time positive system optimal control problem for
capacity planning and provide a number of interesting insights into capacity planning and
at the same time address some open problems.

2 The Model

We adopt a common unit of production hours. We now introduce the model.

2.1   Dynamics Equations

For t = 0, 1, 2,..., T -1, and i = 1, 2, … , n,

Ii,t+1 = βit Iit +  γit Xit +  δit Oit            (1)

Wt+1 = αt Wt +  Ht , (2)

where

0 ≤ αt  ≤ 1, 0 ≤ βit ≤  1, 0 ≤ γit ≤  1,  0 ≤ δit ≤  1           (3)

t is the time period (usually a week or a month), n is the number of product families and
T is the number of time periods in the horizon of planning, or, simply, the planning
horizon.

In the difference equations (1)-(2) the state variables Iit and Wt, the decision
variables Xit, Oit and Hit, and the parameters αt , βit , γit and δit of the production system
have the following meaning:

Wt = the number of people employed in month t;
Iit   = the hours stored in inventory at the end of month t of product family i;
Xit  = the regular time production hours scheduled in month t for product family i;
Oit  = the overtime production hours scheduled in month t for product family i;
Ht  = the number of employees hired at the end of month t for work in month

(t+1);



αt = the fraction of employees employed in month t that are retained in the month
(t+1), the survival coefficient;

βit = the fraction of the total of the hours stored in inventory at the end of month t
of product family i, which is stored in inventory at the end of month (t+1),
the storage coefficient;

γit  = the fraction of regular time production hours scheduled in month t which are
stored in inventory in month (t+1) of product family i;

δit = the fraction of overtime production hours scheduled in month t which are
stored in inventory in month (t+1) of product family i.

The coefficients αt (survival), βit (storage), δit and γit have an attractive economic
interpretation and are quite helpful in the planning process.  They are used in the model
as exogenous parameters characterizing the production system but their role in the
process of decision-making is, clearly, important since they (their values) determine the
system evolution.  Note also that in (2) αt Wt is equal to the number of employees
employed in month t that are retained in month (t+1), and therefore (1 - αt)Wt  is equal to
the number of employees fired in month (t+1).  Furthermore, it is not difficult to see from
(1) that the hours of production of family i sold in month t is equal to (1-βit)Iit + (1-γit)Xit

+ (1-δit)Oit.

2.2   Constraints

For t = 0, 1, 2, ..., T -1, and i = 1, 2, …, n,
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Iit – Bit ≥ 0, (6)

(1 - βit) Iit + (1 -  γit) Xit + (1 - δit) Oit - Dit = 0
(7)

where

Ut  = the number of idle time regular production hours in month t;
St  = the number of idle time overtime production hours in month t;
Bit = the minimum number of hours to be stored in inventory in month t of

product family i;
A1t = the maximum number of regular time hours to be worked per employee per

month;
Dit = the demand for product family i in month t;
A2t = the maximum number of overtime hours to be worked per employee per

month;
n   = the number of product families;
εi   = the set-up time for product family i in regular time;



κi   = the set-up time for product family i in regular time;
σ(Xit) = binary set-up variable for regular time production of product family i in

month t;
σ(Oit) = binary set-up variable for overtime production of product family i in

month t.

The functionsσ(Xit) and σ(Oit) in the constraints (4)-(5) are defined as follows
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From their meaning, clearly, all the state and decision variables as well as the
parameters introduced above are non-negative so that

Iit, Xit, Oit, Wt , Ht ,Ut , St , Bit , Dit, A1t , A2t ≥ 0, (9)

The restrictions (4), (5) and (7) on the dynamics of the production system are mixed
constraints imposed on the state and decision variables for every time period t.  The
number Ut of idle time regular production hours in month t , the number of idle time St

overtime production hours in month t and the minimum number Bt of hours to be stored
in inventory in month t are assumed to be exogenous parameters in the model.  As a
matter of fact the functional constraints (4)-(5) are highly non-linear since they contain
the unit step functions (8).  Taking into account the set-up times and the product families
clearly makes the model much more complicated.

2.3   Boundary Conditions

Wo = A3 ≥ 0 (10)
Iio  = Ai4 ≥ 0 (11)
WT = A5 ≥ 0 (12)
IiT = Ai6  ≥ 0 , i = 1, 2, … , n, (13)

where

A3  = the initial employment level;
Ai4 = the initial inventory levels of product family i;
A5 = the desired number of employees in month T (the last month of the planning

horizon);
Ai6 = the desired inventory level of product family i at the end of month T.

The states Wo and Io are called initial states, and the states WT and IiT are final
(terminal) states.

2.4   Assumptions

The dynamic model (1)-(13) described above is introduced under the following
assumptions.  In any month t:
• All regular time employees work overtime.



• Only existing regular time employees work overtime.
• All employees work the same number of regular time hours, up to the limit A1t.
• All employees work the same number of overtime hours, up to the limit A2t.

The dynamic model for capacity planning (1)-(13) can be built-in in a decision
support system.  It is somewhat easier for simulation and decision-making than the static
models considered in {2, 7].  On the other hand, introducing an objective (cost) function
we can consider the related optimal control problem and determine the optimal decision
sequences and the corresponding optimal state trajectory over the horizon of planning T.
Such an optimal control problem is formulated and discussed in the section 4.

3 Positive Linear System Dynamics

The dynamic equations (1)-(2) can be rewritten in the matrix form

W

I

I

W

I

I

H

X

X

O

O

t

t

n t

t

t

nt

t

t

nt

t t

nt nt

t

t

nt

t

nt

+

+

+



















=





































+















































1

1 1

1

1 1 1 1

1

1

0 0

0 0

0 0

1 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

,

,

M

L

L

M M O M

L

M

L L

L L

M M M M M M M M M

L L

M

M

α
β

β

γ δ

γ δ

,

(14)
t = 0, 1, 2,..., T-1,

or, respectively,

x(t+1) = A(t) x(t) + B(t) u(t),       t = 0, 1, 2,..., T-1, (15)

where the vector of state variables x(t), the decision (control) vector u(t), the system
matrix A(t) and the control matrix B(t) are given by the corresponding vectors and
matrices in (14).  Note that all of the entries of u(t), A(t) and B(t) are greater than or
equal to zero for any time period t.  Vectors and matrices with nonnegative entries are
called nonnegative vectors and matrices, see Berman and Plemmons [1994].  They are
denoted as u(t) ≥ 0 and A(t) ≥ 0, respectively.  Since the system matrix A(t) ≥ 0, the
control matrix B(t) ≥ 0 and the decision vector u(t) ≥ 0 are nonnegative for any t it can
be seen from (14) (or (15)) that the state vector x(t) is a nonnegative vector whenever
the initial state
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is nonnegative.  Thus, nonnegativity (positivity) is an intrinsic property of the system
(14), that is (15).  Such systems are called positive linear systems, see, for example
Luenberger [1979].  It can be proved that the conditions u(t) ≥ 0,  A(t) ≥ 0 and B(t) ≥ 0
are necessary and sufficient for the state trajectory {x(t)} to be nonnegative for any t.



Note also that the nonnegativity of the decision variables u1(t) = Ht, u2i(t) = Xit  and u3i(t)
= Oit guarantees the nonnegativity of the state variables in the functional constraints (4),
(5) and (7).  Note also that the final (terminal) state is
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is non-negative too.
The (dynamic) system theory for positive linear systems has been rapidly developing

during the last decade although one of the cornerstones of this theory is the famous
Frobenius-Perron theorem for nonnegative matrices known for over 80 years, see
Berman and Plemmons [1994] or Luenberger [1979].  The Frobenius-Perron theorem
plays a fundamental role in mathematical economics, input-output analysis, economic
dynamics, probability theory and mathematical statistics, and any linear theory involving
positivity.

4 The Optimal Control Problem

A relevant functional (objective function, criterion, cost function, performance index) can
be the cost of our decisions about the regular time production hours of product family i
scheduled in month t, the overtime production hours of product family i scheduled in
month t, the number of employees hired at the end of month t for work in month (t+1),
the number of employees fired in month t and the related work force as well as the
inventory expenses and the set-up costs of product family i in regular time and,
respectively in overtime.  Thus
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where

cH  =  the cost of hiring an employee;
cF  =  the cost of firing an employee;
cR  =  the regular time work force cost per employee hour;
cO  =  the overtime work force cost per employee hour;
cU  =  the cost per labour hour of idle regular time production;
cS  =  the cost per labour hour of idle overtime production;
ciR =  the cost per labour hour of regular time production of product family i;
ciO =  the cost per labour hour of overtime production of product family i;
ciI  =  the cost per month of carrying on labour hour of work of product family i;
ciRS =  the set-up cost of product family i in regular time;
c iOS = the set-up cost of product family i in overtime.



Note that the unit costs might depend on t.

We formulate now the discrete-time optimal control problem.

Problem OCP

minimize  z
s.t.
difference equations (1)-(2)
constraints (4)-(9)
boundary conditions (10)-(13).

The dynamics equation (1)-(2), the objective function (16) and the constraints (6)-
(7) are linear, but the functional constraints (4)-(5) are highly non-linear since they
contain the unit step functions (8).  Moreover, (4)-(5) and (7) are constraints imposed on
the decision and state variables, that is mixed state-space and control constraints.  On the
other hand the positivity property of the system (14) implies that the nonnegativity
constraints (9) on the states x1(t) = Wt and xi+1(t) = Iit , i = 1,..., n, are automatically
satisfied for any non-negative decision sequences {Ht},{Xit}and{Oit}.  The initial and
terminal (final) points(10)-(13) of the state trajectory are fixed so the optimal control
problem (Problem OCP) formulated above is a two-point boundary-value nonlinear
dynamic optimization problem with mixed state-space and control constraints.  The
solution to this problem is the optimal decision sequences of hiring {u1(t)}={ }Ht ,
regular time production hours of product family i {u2i(t)}={ }Xit and overtime
production hours of product family i {u3i(t)}={ }Oit , and the corresponding optimal
trajectories of the number of people {x1(t)} ={ }Wt  and the hours stored in
inventory{xi+1(t)} ={ }Iit , i = 1,..., n, which minimize the cost functional (16).

The optimal control approach to the theory of the firm is motivated by three issues:
(i) the need for policies, (ii) the contribution of deductive analysis, and (iii) the need to
incorporate time. Van Hilton at al  [1993] have well exposed the state-of-the art of this
area but they discuss only continuous-time systems and exploit Pontryagin Maximum
Principle developed for such systems.  They do not consider positive systems as well as
discrete-time models.  Discrete-time models are somewhat more suitable to describe the
firm’s dynamics.  Moreover, the model (1)-(13) not only represents a discrete-time
positive system but it contains a number of important parameters not included in the
dynamic models described in the literature.  At the same time, the first question that
arises when solving any two-point boundary-value optimal control problem is whether
there exists an admissible decision sequence {u(t)}that can carry out the production
system from the given initial state x(0) into the specified final state (goal) x(T).  This
question is closely related to the (positive) controllability properties of the system.
Unfortunately not much attention to date is paid to controllability of the dynamic models
of the firm as it is evident from Luenberger [1979} and van Hilton at al  [1993].  We
have studied the (positive) controllability properties of the production system (1)-(3) in a
related paper [3].

In the next section we give some computational considerations for solving the
optimal control problem OCP.



5 Some Computational Considerations

The unit step functions σ(Xit) and σ(Oit) in the constraints (4)-(5) are the main obstacle
in solving Problem OCP by using a general optimal control solver.  To overcome the
problem creating by the discontinuity of the unit step functions given by (8) in the
constraints (4)-(5) we approximate them as follows

σ(z) ≈ 1 - e Mz− ,    0 ≤  z < ∞, (17)

where M > 0 is a sufficiently large experimentally determined constant.  Note that the
function σ(z) → 1 as z → ∞, and σ(z) → 0 as z → 0.  After the substitution of (17) in the
constraints (4)-(5) and the objective function (16) they become continuous functions in
Xit and Oit so that this makes it possible to use a general optimal control solver for
solving the discrete-time optimal control problem (OCP).

We have used DMISER 3 [5] to solve several instances of Problem (OSP) and
obtain a solution to the approximated problem.  DMISER 3 is a software package for
solution of combined optimal control and optimal parameter selection problems in which
the system dynamics is described by difference equations.  It is modeled on MISER 3 [5].
Even though the controls in discrete-time problems are naturally parametrized, DMISER
3 exploits the idea of control parametrization.  According to the authors of the package
the representation of individual controls (decisions) over a number of time steps by a
single parameter greatly reduces the number of decision variables in problems with a
large number of time steps as well as improving the likelihood of convergence to an
optimal solution.  The procedure of installing and executing the DMISER 3 as well as
the user subroutines and output files can be found on
http://cado.maths.uwa.edu.au/miser/.

DMISER 3 is a general purpose software package.  The structure of the discrete-
time optimal control problem (OCP) formulated above allows for the development of
more efficient specialized exact algorithms.  We are now in the process of developing
such an algorithm.

Acknowledgements

The authors wish to thank K.L. Teo for the discussions on some computational aspects
of the problem.

References

[1] A. Berman, and R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences,
SIAM, Philadelphia, 1994.

[2] W.L. Berry, T.E. Vollman, and D.C. Whybark, Manufacturing Planning and
Control Systems, 3rd ed., Business One/Irwin, Homewood, IL, 1992.

[3] L. Caccetta, L.R. Foulds, and V.G. Rumchev, “A positive linear discrete-time model
of capacity planning and its controllability properties”, Proceedings of the



International Congress on Modelling and Simulation MODSIM’99, Hamilton, New
Zealand, University of Waikato Press, 1999.

[4] O. van Hilten, P.M. Kort, and P.J.J.M. van Loon, Dynamic policies of the firm: An
optimal control approach, Springer-Verlag, Berlin, 1993.

[5] L.S. Jennings, M.E. Fisher, K.L. Teo, and C.J. Goh, MISER3: Optimal Control
Software (Theory and User Manual}, ISBN 0 646 01 547 8, 7 Topaz Pl. Carine, W.A.,
EMCOSS, 1990.

[6] D.G. Luenberger, Introduction to Dynamic Systems: Theory, Models &
Applications, Wiley & Sons, New York, 1979.

[7] L. Ozdamar, M.A. Bozyel, and S.L. Birbil,“A Hierarchical Decision Support System
for Production Planning”, European Journal of Operations Research, 104 (1998),
403-422.


