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Abstract

The Auckland Police Communication Centre accepts both emergency and some non-
emergency calls from the upper half of the North Island, and dispatches police units to
those calls. The centre would like to select staffing levels so that certain customer
service performance criteria are met. We investigate the use of queuing models to assist
in setting these staffing levels. An approach that ignores the fact that emergency calls
receive higher priority (the standard Erlang delay formula) tends to yield slightly higher
staffing levels than a second approach that explicitly considers the two priority levels of
the calls.
     The existing shift structures at the centre are perhaps not as flexible as one might like
to deal with variable demand. With smaller shift lengths, and more flexible starting
times, one would expect to need less staff to cover the required levels, and our analysis
supports this.

1 Introduction

The Auckland Police Communication Centre in New Zealand fields calls requiring
police response from the upper North Island. The call takers of the communication
centre simply answer the incoming calls and pass them to the dispatchers who dispatch
jobs according to the level of emergency and the current policing resources.
     Calls are classified into three groups: emergency (111) calls, allied emergency
agencies calls and non-emergency (general) calls. Allied Emergency Agencies calls are
calls requiring ambulance or fire service in which police help is also needed.
     The Police Communication Centre aim requires that their call takers meet the
following performance target: 90% of emergency (111) calls and allied emergency
agencies calls to be answered within 10 seconds, and 80% of non-emergency (general)
calls to be answered within 30 seconds. Owing to these different call service
requirements, the three types of calls could be divided further into two priority classes:
emergency (111) calls and allied emergency agencies calls are classified as priority 1
calls since they have the same performance target, and non-emergency (general) calls
are rated priority 2 because of the lower performance requirement.
     When a call arrives to the communication centre and all call takers are busy, the call
is queued. If a priority 1 call waits for more than 10 seconds in the queue, then it is
passed to another communication centre in another part of the country. According to the



Police Communication Centre staff, this occurs only very rarely. Queued priority 2 calls
are answered only after any queued priority 1 calls have been cleared.
     The Police Communication Centre has a budget for their staffing and therefore
avoidance of exceeding it is encouraged. Appropriate staffing levels, corresponding
service performance and the cost-effectiveness of the existing roster structure for the
call takers are the most important concerns.
     In this paper we consider the problem of determining the number of call takers
required in each hour to ensure that the service requirements of calls are satisfied at all
times of the day. We also investigate potential savings by moving from the existing
roster structure of call takers to a different roster structure.
     Currently, the Auckland Police Communication Centre uses an Erlang c calculator to
estimate the number of call takers required (see M/M/c later) which is the most common
queuing model adopted in a call centre environment [6]. Our approach is to study the
existing model (M/M/c) the communication centre adopts and compare it with a new
model that takes into account the priorities of calls. The new model applied here is the
non-preemptive M/M/c queue [4]. It is easy to calculate the exact performance of
priority 1 calls, however, difficulty with priority 2 service estimation was encountered
while implementing this new model as it requires considerable computation that is not
easily performed in the spreadsheet environment that the Police Communication Centre
prefers. We used Markov’s inequality [2] to obtain a bound on the service performance
of priority 2 calls. The queuing models are discussed in detail in Section 2.
     We are very lucky in that a large amount of data was available to us. In particular,
the communication centre has hourly data going back several years on the number of
calls (broken down by type) that were received, together with service times. The service
times for non-emergency calls appear to be somewhat longer than those for emergency
calls. In addition, we identified two distinct seasons from the data of call arrivals. The
period from March to August was defined for the purposes of this study as the “winter”
season and the period from September to February was defined as the “summer” season.
Each season is treated separately for the remainder of this paper.
     It is often assumed that calls arrive as a Poisson process at call centres for several
reasons [5]. Suppose we assume that the calls in a given period are generated by a
Poisson process with a fixed arrival rate λ. A Chi-Square Test of arrivals shows that
some times are not well modelled by a Poisson process, while other times are. Recent
research [3] suggests that this may be because the arrival rate at certain times is random,
not fixed as our previous analysis assumed.
     By assuming a fixed arrival rate, we may underestimate the number of servers
required in our queuing models in Section 2. This can be partially addressed by
decreasing the service rate.
     In this paper, the arrival rate for each hour for both seasons was obtained by taking
the average of the actual calls received in the corresponding hour of the entire season
(26 weeks).
     Each of the three types of calls has a different service time. For our model we need a
common service time. This is calculated by taking the weighted average of service times
for the three different types of calls. Furthermore, given the fact that we cannot isolate
the service time distributions, it is reasonable to assume that they are exponential.
     As for the rostering aspects of call takers, we looked at the workload allocation
models that use the existing roster structure, as well as a new and more flexible
structure.
     These two models with different roster structures should give the Police
Communication Centre some indications in regard to a better shift structure that also
reduces staffing hours. The detail of the workload allocation models is discussed in
Section 3.



     In Section 4, we provide and discuss the results of our analysis on a subset of the
Police Communication Centre data set

2 The Queuing Models

2.1 M/M/c Queue

Consider a queuing system where customers arrive according to a Poisson process with
rate λ. Service times for all customers are exponentially distributed with common mean
µ -1 and there are c servers.
     For traffic intensity ρ < 1, the state probabilities are denoted by pn = probability that
n calls are in the system. Let W be a random variable having the limiting wait in queue
distribution. The distribution of waiting time, given that one has to wait, is exponential
with mean (cµ −  λ)-1 [7].
     The corresponding fraction of time that all servers are busy is
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where N is a random variable taking values of number of callers in the system.
     Then the probability of the wait in the queue being less than w units of time is
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     For a stable system, we must have ρ < 1, so that the minimal number of servers
required to get a stable system is

 c  = λ µ/ . (2.1.4)

     Subject to the service requirements, we can increment on the minimal number of
servers found from (2.1.4) until the desired level of performance is reached. The level of
performance is checked by (2.1.3) to see if the required proportion of calls that has to be
answered within the target time is reached.
     The M/M/c queue ignores the priority of calls, which means that no calls receive
priority over any other calls. The arrival rate we used includes both priority 1 and
priority 2 calls. To ensure that 90% of priority 1 calls wait within 10 seconds, we choose
c so that 90% of all calls wait within 10 seconds. This ensures that both priority 1 and
priority 2 calls will satisfy their service requirements.

2.2 Non-Preemptive Priority M/M/c Queue

In this priority queue model, we choose a staffing level per hour, c1, that gives 90% of
priority 1 calls an answer within 10 seconds and a staffing level per hour, c2, that gives
80% of priority 2 calls an answer within 30 seconds. We then take the maximum of c1

and c2 as the ultimate staffing level that will satisfy the requirements for both priority 1
and priority 2 calls.
     Consider a non-preemptive M/M/c priority queuing system with n priority classes [4]
where customers of class i arrive according to a Poisson process with rate λi, 1 ≤ i ≤ n.
Service times for all customers are exponentially distributed with parameter µ.



Customers of class i have non-preemptive priority over customers of class j whenever i
< j, and service within each class follows the first come first serve rule.
     Based on the assumption that an arriving customer waits for service if and only if all
servers are busy, Kella and Yechiali defined the following:
     The overall arrival of the system,
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     The traffic intensity of each priority class i,
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     σj denotes the sum of the traffic intensities of class 1 up to class j,
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and the overall traffic intensity of the system is
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     Consequently, the probability of all servers being busy in a non-preemptive M/M/c
queue [4] with the same service rate for all classes is
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     Let Wk denote the steady-state waiting time in the queue for priority k customers.
Kella and Yechiali also give the Laplace Transform of Wk for each k ≥ 1. It is easy to
invert the transform for k = 1 (priority 1 customers) to get the probability that the
waiting time in the queue is less than or equal to w units of time,

P W w c w( ) exp( ( ) )1 11        ≤ = − − −π µ λ . (2.2.6)

     On the contrary, there is no easy way to invert the transform for k >  1 (lower priority
classes).
     Alternatively, we can use Markov’s inequality [2], or numerical transform inversion
[1] to calculate P(W ≤ w), the probability that the waiting time in the queue before a
server is available is at most w units of time for lower priority classes.
     In the approach where Markov’s inequality is employed to bound P(Wk ≤ w) for any
lower priority class k, we need the first two moments of Wk .
     These two moments of the waiting time of a class k customer [4] are given by
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     Markov’s inequality [2] for a non-negative random variable X and constants x, α >  0
states that
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     From (2.2.10), we are able to get an upper bound of P(Wk >  w). Thereafter, a lower
bound on P(Wk ≤ w) can be evaluated by subtracting the bound (2.2.10) from 1. This
lower bound is then used as an estimate of P(Wk ≤ w). However, there is a possibility
that this approximation of P(Wk ≤ w) is an underestimation of the true P(Wk ≤ w); and
this could lead to a possible overestimation of required server numbers. In practice, this
problem is often addressed by ignoring the performance requirements for the lower
priority classes and concentrating solely on satisfying the performance target for the top
priority customers. This would bring down the prediction of the number of servers
required subject to the performance requirements and hopefully yield an estimation
closer to the true value.
     Note that determination of the number of servers needed to satisfy performance
targets is very similar to the process outlined in the last few paragraphs of Section 2.1.
First of all, the minimum number of servers required to yield a stable system is
calculated by using (2.1.4). Then this minimum value is incremented by one at a time
until the desired level of performance is reached for all priority classes.

3 The Workload Allocation Models

These workload allocation models select shift starting times and calculate the number of
staff required in the selected shifts so that required staffing levels are met. However,
these models do not generate full lines of work (shift for workers over a week is not
considered).

3.1 Model Using the Existing Shift Structure

Currently, the call takers in the Police Communication Centre work according to a 5-
week cyclic roster. The features of this cyclic roster are summarised in Table 1 below.

Week 1 Week 2 Week 3 Week 4 Week 5
Mon N x x L e
Tue N x x L e
Wed N x e L x
Thu N s e x x
Fri X s e x n
Sat X s x e n
Sun X s x e n

Shift Hours & Lengths
e = 0600 to 1600 10 early
s = 1600 to 0200 10 swing
L = 1200 to 2200 10 late
n = 2100 to 0600         9

Table 1. The existing cyclic roster for the call takers in the Police Communication
Centre.



     In Table 1, e, s, and L represent the early, swing and late shifts respectively with a
shift length of 10 hours; n is the special 9-hour shift, and x denotes a day-off. Call takers
are divided into 5 groups. Each group works in a different shift everyday or has a day
off. For example, on any Monday, two groups would have the day-off while the other
three work in the early, late or special 9-hour shift accordingly. Every call taker would
have been through all the allocated shifts in Table 1 every 5 weeks.
     In this model where the existing shift structure of the communication centre is kept,
we are seeking a weekly workforce allocation that minimises the total staffing hours.
We assume that call takers can work in 4 different shifts, e, s, L and n as outlined in
Table 1, and everyday in a week from Monday to Sunday.
     The aim here is to find the number of people required in each shift which would
satisfy the hourly staffing requirements suggested by the queuing models in the previous
section and keep the total staffing hours to a minimum.
     This workforce allocation problem can be formulated as an integer program of the
form given by:

Minimise z = cTx (3.1.1)

Subject to Ax ≥ b (3.1.2)

xj ∈  {0, 1, 2, ...}          j = 1, ..., n (3.1.3)

where A = (aij) is a m × n matrix of zeros and ones;
aij = 1 if shift j exists in hour i,
     = 0 otherwise;
x = (xj) is a n × 1 vector of variables representing the number of people
       in shift j;
b = (bi) is a m × 1 vectors containing the hourly staffing requirements
       of a typical week;
c = (cj) is a n × 1 cost vector representing the length of shift j.

     In this model, m = 168 because there are 168 hours in a week and n = 28 as there are
28 shifts in a week with 4 shifts in each day. The cost vector of the integer program is
the vector containing the relevant shift lengths for each shift, either 9 or 10, since we are
minimising the total staffing hours of a week. A matrix contains the information on shift
structure.

3.2 Model Using a Flexible Shift Structure with a Small Shift Length

Instead of adopting the current shift structure, this model examines the case where a
smaller shift length and more flexible starting times of shifts are implemented. In
particular, we are looking at a shorter shift length of 8 hours and shifts that can begin at
the start of any hour in a week.
     Again we are seeking a weekly workforce allocation that minimises the total staffing
hours, subject to the hourly staffing levels suggested by our queuing models.
     The number of people required in each shift can be found by solving the same
integer program, (3.1.1), (3.1.2) and (3.1.3) in Section 3.1.
     In this model, m = n = 168 since there are 168 hours in a week and 168 possible
starting times if shifts start at the beginning of the hour. The cost vector, c, is now a
vector of 8’s since the shift length is kept constant at 8 hours. A is a 168 × 168 square
matrix containing all the shift information.



4 Results and Discussion

4.1 Results and Interpretation from the Queuing Models

Figure 1 shows the required hourly staffing levels in a typical week (168 hours, from
midnight Monday to midnight Sunday) suggested by our queuing models that satisfy the
performance requirements of the Police Communication Centre for winter. We detected
quite a large amount of variation in the predicted staffing levels. In winter, required
staffing levels vary from 3 to 12 servers. This variation might be due to the time of day
effect. In particular, we observed that the predicted staffing levels reached their peaks
roughly around the period 4 to 7pm in weekdays whereas in weekends the staffing
levels predicted are less variable. We suspect that the time of day effect plays an
important role in weekdays. Plot for summer is not included here because it shows
similar results.

Figure 1. Plot of the staffing levels suggested by our queuing models for winter.

     The plot shows the results obtained from the M/M/c queue and the non-preemptive
priority M/M/c queue. Since priority 2 calls are less urgent than priority 1 calls, they can
tolerate greater delays. In the priority queue model, we used Markov’s inequality to
bound the priority 2 performance. We looked at two cases where case 1 ensures the
bound is satisfactory and a second case that reports bounds without enforcing the
priority 2 service requirement. From Figure 1, we can see that case 1 where priority 1
and priority 2 service requirements are enforced has the highest predicted staffing
levels. Case 2 has the lowest predicted staffing levels among the three sets of staffing
levels. The standard M/M/c queue produce results in between these 2 cases.
     Theoretically, staffing levels predicted in the priority model should be less than that
of the standard non-priority model. This is because of the fact that all calls are treated as
priority 1 in the standard model, whereas in the priority model, calls are divided into
priority 1 and priority 2 with the latter having a lower performance target.



     Hence we can deduce that Markov’s inequality overestimates the required staffing
levels in modelling priority queues and better results can be obtained without enforcing
the priority 2 service requirement. In fact, the results obtained from the priority queuing
model when ignoring P2 service requirement look quite good. It appeared that the
performance target of priority 2 calls is met most of the time even though we attempted
to ignore it.

4.2 Results and Interpretation from the Workload Allocation Models

From the workload allocation model that used the existing shift structure of the Police
Communication Centre, Figure 2 shows the staffing coverage of workforce allocation
solved subject to the staffing levels suggested by the priority M/M/c queue, ignoring the
priority 2 service requirement in a typical week in winter. The total weekly staffing
hours are 1565 for winter and 1593 for summer.

Figure 2. Plot of the staffing coverage of the priority M/M/c queue ignoring the P2
service requirement in a typical week in winter.

     We observed a large amount of “over-cover” in the plot. This indicates that the
existing shift structure leads to an excessive amount of paid staffing hours if the Police
Communication Centre is determined to satisfy their service goals at all times of the
day.
     From the workload allocation model that considers a more flexible shift structure and
a shorter shift length, Figure 3 shows the staffing coverage of workforce allocation
solved subject to the staffing levels suggested by the priority M/M/c queue, ignoring the
priority 2 service requirement in a typical week in winter. The total weekly staffing
hours are 1296 for winter and 1312 for summer.
     We observed a much tighter coverage in these plots as compared to the model that
uses the existing shift structure. This suggests that moving from the existing shift
structure to a more flexible one would lead to a potential reduction in paid staffing
hours.
     Plots for summer are not shown in here as they produce similar results to winter.



Figure 3. Plot of the staffing coverage of the priority M/M/c queue ignoring the P2
service requirement in a typical week in winter.

     Comparing the two workload allocation models of different shift structures, Table 2
summarises the total weekly paid hours for each model. Percentage paid staffing hour
reductions for moving to a roster with a more flexible shift structure are also calculated.

Winter Summer Winter Summer
M/M/c M/M/c Priority M/M/c Priority M/M/c

Existing 1605 1613 1565 1593
Flexible 1320 1344 1296 1312
% Reductions 17.76% 16.68% 17.19% 17.64%

Table 2. Total staffing hours of rosters and the percentage paid hour reduction moving
to a flexible roster.

     Notice that the last two columns of Table 2 are the ones we see as most relevant
since they contain the results which were obtained from our best model.
     We observe that paid staffing hour reductions of up to 17% are possible if we move
to a roster that has more flexible starting times and a shorter shift length of 8 hours.

5 Impact and Conclusions

The results obtained in this project have been reviewed with great interest by the
Auckland Police Communication Centre. The management is suitably impressed and
keen to establish ongoing collaboration with the University of Auckland.
     The two queuing models, the M/M/c queue and the non-preemptive priority M/M/c
queue, produced reasonable results in finding the hourly staffing levels of a typical
week.
     The non-preemptive priority M/M/c queue is the model that best simulates the call
operations in the Police Communication Centre.
     Markov’s inequality was shown to be acceptable in modelling priority queues but
exact transform inversion would be a better choice. Using Markov’s inequality, the
results showed a prediction of staffing levels of the priority M/M/c queue slightly
greater than that of the standard M/M/c queue. As a result, the number of servers



required to satisfy the performance target was slightly overestimated. Priority 2 service
requirement was ignored to remedy this problem.
     Subject to the staffing levels as revealed by our queuing models, it was found that
the existing roster structure of the Police Communication Centre leads to a large amount
of "over-cover". A move to smaller shift lengths and more flexible shift starting times
could yield reductions in paid staffing hours of up to 17%.

Acknowledgements

I would like to thank Michael Mann and Roly Williams of the Auckland Police
Communication Centre for their support of this project. This research was partially
supported by New Zealand Public Good Science Fund grant number UOA 803.

References

[1] Abate, J. and Whitt, W. (1995) Numerical inversion of Laplace transforms of
probability distributions. ORSA Journal on Computing. 7 36− 43.

[2] Billingsley, P. (1986) Probability and Measure. Second edition. Wiley, New York.

[3] Henderson, S. G. (1999) Setting staffing levels in call centers with random arrival
rates. Under Submission.

[4] Kella, O. and Yechiali, U. (1985) Waiting times in the non-preemptive priority
M/M/c queue. Commun. Statist. - Stochastic Models. 1(2) 257–262.

[5] Ross, S. M. (1983) Stochastic Processes. Wiley, New York.

[6] Segal, M. (1974) The operator scheduling problem: a network flow approach.
Operations Research. 22(4) 808− 823.

[7] Wolff, R. W. (1989) Stochastic Modeling and the Theory of the Queues. Prentice
Hall, Englewood Cliffs, New Jersey.


