
Single Node Service Provision with Fixed Charges�

Shane Dye

Department of Management

University of Canterbury

New Zealand

s.dye@mang.canterbury.ac.nz

Leen Stougie,

Eindhoven University of Technology

The Netherlands

Asgeir Tomasgard

SINTEF Industrial Management

Norway

Abstract

The service provision problem described in this paper comes from an application of
distributed processing in telecommunication networks. The objective is to maximize
a service provider's pro�t from o�ering computational based services to customers.
The services are built from software applications called subservices. The service
provider has limited capacity of some resources and therefore must choose from a
set of software subservices those he would like to o�er. He maximizes pro�t which
depends both on the number of requests met and �xed charges for installing the
subservices. A �xed charge is positive when it is charged by the service provider
and negative if it is an amount the service provider must pay for example to license
the subservice.

Our main interest in this problem comes from it being a subproblem in a sce-
nario decomposition of the service provision problem with stochastic demand. We
assume stochasticity is represented in terms of scenarios from a discrete probability
distribution. The �xed charges can be interpreted as dual prices on the linking
constraints in a variable split that makes the stochastic problem separable in its
demand scenarios.

The main contribution of the paper is to give a pseudo-polynomial time algo-
rithm to solve the �xed charge problem and describe how this algorithm can be
used in a fully polynomial time approximation scheme. It is also indicated how

�For this work �nancial support has been received from Telenor and Leonardo Da Vinci

the results from this paper are used in a decomposition scheme for the stochastic
service provision problem.

Keywords: distributed processing, telecommunications, service provision, dy-
namic programming, (stochastic) integer programming, fully polynomial approx-
imation scheme.

1 Introduction

The service provision problem comes from an application in telecommunications. It
considers how to install di�erent processing based services on a set of computer nodes
in a network with distributed processing capabilities. The computers typically have
limited resources such as memory, processing capacity and storage capacity. All the
services are built from a set of subservices. The subservices are software applications
that run in a distributed manner in the network. These applications communicate
using an underlying transportation network. The focus of this paper is on how to
allocate computational resources to a set of subservices in order to maximize the
pro�t gained through meeting customer demand for services. Because the resources
are limited, it may be necessary to reject some customers.

The shift of focus from transportation to computational resources in the tele-
com industry follows as a consequence of three factors: technological developments,
such as digital technology and architectures like ATM [1, 8], increasing the trans-
portation capabilities of networks; new services, like Voice Mail, requiring more
computational resources; and the computing industry's inuence upon a deregu-
lated telecommunication market. From the prognosis that the problem of allocating
node resources will be important in near future (c.f. the Internet) we were asked
by the �nancial contributor to examine the situation with sole focus on processing.

It is assumed that the transportation network, the telecom markets and the
distributed processing capabilities of the network nodes are such that the following
hold. Firstly, subservice demand may be considered independently of the services
that generated it. Secondly, transportation and customer location need not be
considered [9]. This paper concerns the problem with only one node to install sub-
services on, with a single constrained computing resource, e.g., processing capacity.

This paper examines the situation where there is a �xed cost or revenue as-
sociated with installing a subservice. There are several ways of interpreting this
�xed amount. One natural situation explaining both positive and negative values is
where the service provider provides a subservice for a third party. In the case of low
demand for the subservice, the service provider charges a �xed amount to install
it. For high demand, he instead o�ers to pay a �xed amount to be able to o�er
the subservice. In both cases, pro�t is also gained from each ful�lled subservice
request. In the remainder this is called a �xed charge, denoted cj for subservice j,
regardless of whether the �xed amount is positive or negative.

Demand for subservice j is given in terms of requested capacity units, dj. Each
unit of demand met for subservice j gains a pro�t of qj. Each subservice uses a given
amount of capacity just being available, independent of the demand met. This is
called the installation requirement of the subservice, denoted by rj for subservice j.

To formalize the model, there are n subservices with rj; dj; qj 2 ZZ+, cj 2 ZZ,
j = 1; :::n and S 2 ZZ+. The binary decision variables zj indicate when subservice j
is installed on the node, zj = 1, or not, zj = 0, j = 1; :::; n. The decision variables
xj give demand met for subservice j in node capacity units, j = 1; :::; n.

The objective is to maximize pro�t. The capacity constraint ensures the node
capacity is not exceeded and the installation constraints require demand for a sub-
service to be met only if the subservice is installed.

Assumption 1 For simplicity demands are pre-processed so that dj � S � rj, 8j.

The mathematical programming formulation of the �xed charge single node
service provision problem (FSP) is given by

max
nX

j=1

cjzj +
nX

j=1

qjxj

s.t.
nX

j=1

rjzj +
nX

j=1

xj � S;

djzj � xj � 0 j = 1; :::; n;
zj 2 f0; 1g; xj � 0 j = 1; :::; n:

(1)

This problem is important in its own right, and also has applications outside
telecommunications. For example, it can be used in production planning on a
single machine: the time available is S, there is a set-up time, rj, on job j and
no requirement that jobs are completed. Pro�t depends linearly on the processing
time of each job, with a �xed cost, cj, for starting job j.

The results from this paper also have implications for solution methods for the
strongly NP-hard stochastic service provision problem where demand is uncertain.
The problem addressed in this paper arises as a subproblem when a Lagrangian re-
laxation is used to decomposed into scenarios a two-stage version of the stochastic
service provision problem without �xed charges. In this context a scenario repre-
sents one realisation of the stochastic demand variables. The decomposition scheme
leads to solving many deterministic (FSP) problems.

Solution methods for other variants of the problem have been discussed in the
literature. Feasibility of the service provision problem with multiple nodes and a
requirement that all demand be met is described in [4] and shown to be strongly NP-
complete. When there are no �xed charges the multiple node problem where pro�t
is maximized is also strongly NP-hard [2], even for a constant number of nodes. For
the single node problem without �xed charges (SP) (this is (FSP) with cj = 0, 8j),
a fully polynomial time approximation scheme (fptas) exists [2]. The analysis of
(SP) has many similarities with the knapsack problem [7]. The stochastic single
node problem, with uncertain demand, is strongly NP-hard, unless the number of
scenarios describing the probability distribution of the demands is �xed [3].

The contribution of this paper is to show that pseudo-polynomial time algo-
rithms exist for (FSP). Section 2 discusses the LP-relaxation then Section 3 gives
pseudo-polynomial dynamic programming algorithms for (FSP). A (fptas) based
on DP and scaling is given in Section 4.

2 LP-relaxation

The LP relaxation (FSPLP) of (1), can be solved in O(n) time and its optimal
value is at most twice the optimal value of (1).

The LP-relaxation has many similarities with both continuous knapsack [7] and
with the LP-relaxation, (SPLP), of (SP) [2]. In [2] it is shown that (SPLP) may
be solved by little more than ordering the subservices by decreasing pro�t per unit
capacity, qjdj=(rj + dj), using the algorithm for the continuous knapsack problem
with item price qjdj and size rj + dj.

For (FSPLP), the algorithm needs an extension to allow for the possibility of
installing a service but not meeting any demand when the �xed charge is favourable.
The subservices are partitioned into three sets A, B and C. C contains subservices
that will never be installed in an LP-solution because cj + qjdj � 0. A contains
subservices not in C where it is no more pro�table per unit capacity to install the
subservice without meeting any demand than it is to meet all demand, cj+qjdj > 0
and cj=rj � qj. B contains subservices for which it is more pro�table per unit
capacity to install the subservice without meeting any demand than it is to meet
all demand for it. For j 2 B cj=rj > qj (> 0).

One set of knapsack items, A0, is created from set A. For j 2 A there is a
knapsack item in A0 with size rj + dj and price cj + qjdj. Two sets of knapsack
items, Bz and Bx, are created from set B. For j 2 B there is item iz 2 Bz with size
rj and price cj and item ix 2 Bx with size dj and price qjdj. For these subservices
it is more pro�table to increase zj than xj. The continuous knapsack problem
with capacity S and items A0 [Bz [Bx is equivalent to (FSPLP). The number of
knapsack items is at most 2n.

An optimal solution to this continuous knapsack can be found adding the items
by decreasing pro�t per unit capacity until either all items are added or critical item
t is reached and fractionally added to fully use the capacity. Such a solution may be
found in O(n) time [7]. This solution corresponds to a solution to (FSPLP) in the
following way. Any item fully added from A0 or Bz has zj = 1 for the corresponding
subservice j. Any item added from A0 or Bx has xj = dj for the corresponding
subservice j. When there is a critical item t, let l be the corresponding subservice.
The node capacity will be fully with used with 0 < zl = xl=dl < 1, if t 2 A0,
0 < zl < 1 and xl = 0, if t 2 Bz, and 0 < xl < dl, if l 2 Bx (in this case zl = 1).
Remaining subservices have zj = xj = 0.

Optimality of this solution follows from the de�nition of A, B and C. Notice
that, when t 2 Bx the solution to (FSPLP) is feasible for (FSP). Such solutions are
observed in computational experiments.

Let �LP and �OPT be the optimal value of (FSPLP) and (FSP), respectively.

�LP =
l�1X

j=1

(cj + dj) + clzl + qlxl � 2�OPT :

A greedy heuristic with performance ratio 2 follows directly from this, c.f. [7, 2].

3 Dynamic programming approach

For (FSP) it may be pro�table to install subservices with no demand met.

Lemma 1 There is an optimal solution to (FSP) with at most one fractional sub-
service, l, (called the critical subservice) with 0 < xl < dl.

Categorize the decision for subservice j asD1: zj = xj = 0, D2: zj = 1 xj = dj,
D3: zj = 1 xj 2 (0; dj), D4: zj = 1 xj = 0. Any optimal solution, (z; x), with at
most one critical demand can be described as a string [D1; :::; Dn] where at most
one j has Dj = D3 and Dj 2 fD1;D2;D3;D4g describes the decision category for
subservice j = 1; :::; n.

Lemma 2 When q1 � q2 � : : : � qn, there is an optimal solution where

� l is the index of a D3 decision, l is the �rst D4 decision or l = n + 1, and

� Dj 2 fD1;D2g for j < l, and Dj 2 fD1;D4g for j > l.

A dynamic program for (FSP) based on Lemma 2 is now given. The subser-
vices are sorted by decreasing q. The stages of the DP-formulation correspond to
the subservices 1; :::; n and the states are (used) capacity. The recursion function
at stage j, fj gives the maximal pro�t obtainable from a state's capacity using
the subservices 1; :::; j. In addition the state space is extended by a parameter b
indicating if a state is exible (b = 1) or inexible (b = 0) according to the following.

De�nition 1 A state at stage j is exible if it has achieved its recursion function
value with only D1 and D2 decisions up to and including stage j.

De�nition 2 A state at stage j is inexible if it has achieved its recursion function
value by including a D3 or D4 decision at stage j or earlier.

The state space is de�ned by pairs (s; b) 2 f1; :::; Sg � f0; 1g with 2S states.
fj(s; 1) is the maximum pro�t achievable with capacity s using subservices 1; :::; j
where (s; 1) is a exible state. fj(s; 0) is similar but (s; 0) is an inexible state. To
simplify notation write fj(s; 1) as Fj(s) and fj(s; 0) as IFj(s).

Starting from F0(0) = 0, Fj(s) = �1, for (s; j) 6= (0; 0), and IF0(0) = 0,
IFj(s) = �1, for (s; j) 6= (0; 0) leads, for j = 1; :::; n, to the recursions:

Fj(s) = maxfFj�1(s� rj � dj) + cj + qjdj; Fj�1(s)g
IFj(s) = max

0�xj<dj
fFj�1(s� rj � xj) + cj + qjxj; IFj�1(s� rj) + cj; IFj�1(s)g:

For the Fj(s), the two terms correspond to extending a exible state at stage j� 1
with a D2 and D1 decision, respectively. For the IFj(s), the �rst term corresponds
to extending a exible state at stage j � 1 with a D3 or D4 decision while the last
two terms correspond to extending an inexible state at stage j � 1 with a D4 and
D1 decision, respectively. The optimal solution is the highest of Fn(S) and IFn(S).

The algorithm based on the above recursion is to generate:

Flexible to Inexible Transition #1

procedure FlexInFlex
�
var �; var L;�F ; LF ; j; q; c; r; d; S)

begin

for i := 0 to S step 1

�(i) := 0; L(i) := ;;

end for

for x := 0 to d� 1 step 1

for i := r + x to S step 1

new� := �(i� r � k) + c+ qx

if �(i) < new� and �F (i) < new� then

�(i) := new�; L(i) := L(i� r � k) [fjg;

end if

end for

end for

end

Figure 1: Straightforward implementation of FlexInFlex.

1. inexible states at stage j from exible states at j � 1, Dj 2 fD3;D4g.

2. inexible states at stage j from inexible states at j � 1. This is as with
knapsack with item size rj and pro�t cj, Dj 2 fD1;D4g.

3. exible states at stage j from exible states at j � 1. As with knapsack with
item size rj + dj and pro�t cj + qjdj, Dj 2 fD1;D2g.

The straightforward way of generating inexible states from exible ones is to con-
sider all xj 2 f0; : : : ; dj � 1g for every exible state. Evaluating Fj(s) and IFj(s)
for s = 0; : : : ; S with j = 1; :::; n the time complexity is O(nS2). Storing all inter-
mediate information has space complexity O(nS).

Overall control of the three steps is straightforward. Steps 2 and 3 are as for
knapsack. Improvements are most easily made in Step 1. The transition above
is shown in Figure 1. Here, � is the vector of new inexible state pro�ts, �F is
the vector of old exible state pro�ts and L and LF are lists of sets describing the
corresponding solutions. j is the current stage (subservice), q, c, r and d are the
problem parameters for this stage and S gives the node capacity (maximum state).
var declares a parameter to act as input and output.

For the remainder of this section states at stage j are assumed to be exible,
while those at stage j+1 are assumed to be inexible. State s at stage j can be used
to generate states at stage j+1 between �(s) = s+rj and and �(s) = s+rj+dj�1.

Lemma 3 s1 < s2 can both be used to generate snew if and only if snew 2 p(s1; s2) =
f�(s2); �(s2) + 1; : : : ; �(s1)� 1; �(s1)g. jp(s1; s2)j = max(0; dj + s1 � s2) � dj � 1.

De�nition 3 s1 < s2 are known as overlapping states when jp(s1; s2)j > 0.

Lemma 4 For two overlapping states of stage j, s1 < s2 it is only necessary to
generate states in p(s1; s2) at stage j + 1 from s1 if Fj(s2) < Fj(s1) + (s2 � s1)qj
and from s2 otherwise.

The above can be utilized when the recursion table is calculated. In current state
scur at stage j examine all decisions from xj 2 f`(scur); :::; dj � 1g where `(s) is the
lowest xj to consider for the state s. Start with `(s) = 0 8s. Each x decision leads to
state snew = scur+rj+xj at stage j+1. Also consider scand = scur+xj as a candidate
to generate snew. If scand generates snew with a higher pro�t than scur, scand is
preferred in all new states in p(scur; scand). Hence if Fj(scand) � Fj(scur) + qjxj,
state scur+1 can now be considered. Otherwise, update `(scand). The new `(scand)
must satisfy scand + rj + `(scand) = �(scur) + 1, i.e., `(scand) = dj � xj. The
computational complexity of the DP remains O(nS2). Preliminary computational
results favour this transition.

The computational complexity can be improved by keeping track of a sorted
next-list of non-dominated states as follows. When scand dominates scur jump di-
rectly to it. Otherwise, put scand as early as possible in the next-list, removing all
states. The `(scand) is adjusted to reect the fact that the �rst elements in the
next-list are preferred. When scur is completely explored the next state explored is
the �rst state in the next-list.

The next-list can be implemented as a circular array of length dj�1 with oating
start and end. The overall computational complexity becomes O(nS logS). An
algorithm based on this is given in Figure 2. Here, UpdateList(scand) inserts scand
into the next-list, returning the new `(scand), and First() returns the �rst state in
the next-list, updating the start pointer. The changes from the �rst improvement
of this section are the three lines marked *.

Preliminary computational tests carried out on 201 generated test problems
indicated that the two improved DP algorithms out-perform standard branch and
bound both in terms of average performance and in the variability of solution time.

4 Fully polynomial approximation scheme

Firstly a DP recursion is given with pro�t as the state space. A scaling approach
is employed to produce a (fptas). The stages of the DP-formulation correspond to
the subservices. Take � as a state of the recursion, this is the pro�t to be achieved.
Fj(�) is the minimum node capacity required to obtain a pro�t of at least � in a
exible state using the subservices 1; :::; j, j = 1; :::; n. IFj(�) is the minimum node
capacity required to obtain a pro�t of at least � in an inexible state.

Starting with F0(0) = 0, Fj(�) =1, 8(�; j) 6= (0; 0), and IF0(0) = 0, IFj(�) =
1, 8(�; j) 6= (0; 0), leads, for j = 1; :::; n, to the recursion

Fj(�) = minfFj�1(� � cj � djqj) + rj + dj; Fj�1(�)g
IFj(�) = min

0�xj<dj
fFj�1(� � cj � xjqj) + rj + xj; IFj�1(� � cj) + rj; IFj�1(�)g:

The optimal solution is found in the nth stage.

Flexible to Inexible Transition #2

procedure FlexInFlex
�
var �; var L;�F ; LF ; j; q; c; r; d; S)

begin

for i := 0 to S step 1

`(i) := 0; �(i) := 0; L(i) := ;;

end for

scur := 0

while scur � S do

for x = `(scur) to dj � 1 step 1

scand := scur + x; snew := scur + r + x;

if snew > S then exit for

if �F (scand) � �F (scur) + qx and scand <> scur then

`(scand) = UpdateList(scand) *

exit for

else

new� := �F (scur) + c+ qx

if new� > �(snew) and new� > �F (snew) then

�(snew) = new�; L(snew) = LF (scur) [j; `(scand) = d� x;

end if

`(scand) = UpdateList(scand) *

end if

end for

scur = First() *

end while

end

Figure 2: A better transition from exible to inexible states

Evaluating Fj(�) and IFj(�) uses dj + 1 comparisons. Evaluating Fj(�) and
IFj(�) for all j = 1; :::; n before any Fj(� + 1) or IFj(� + 1), has time complexity
O(n�OPTS). Storing all intermediate information has O(n�OPT) space complexity.

The recursion can be improved as with the DP of Section 3 leading to a com-
putational complexity of O(n�OPT logS).

The following (fptas) is inspired by work by Ibarra and Kim [5], Lawler [6] and
Dye, Stougie and Tomasgard [2]. The problem is reformulated with each variable xj
scaled by dj to obtain variable yj = xj=dj with values in f0; 1=dj; : : : ; (dj�1)=dj; 1g,
j = 1; :::; n. The pro�t coe�cients are multiplied by the demand, q0j = qjdj.

From this formulation, scale the pro�t coe�cients with k > 1: ~qj = b
q0

j

k
c and

~cj = b cj
k
c, j = 1; :::; n. Use the above DP then multiply the solution value obtained

by k as an approximation, ~�, to the �OPT . Let yOPTj and ~yj, j = 1; :::; n, be the
optimal solution for the original and the scaled problems, respectively.

~� = k(
nX

j=1

~qj ~yj +
nX

j=1

~cj~zj) � k(
nX

j=1

~qjy
OPT
j +

nX

j=1

~cjz
OPT
j)

�
nX

j=1

(q0j � k)yOPTj +
nX

j=1

(cj � k)zOPTj � �OPT � k
nX

j=1

(yOPTj + zOPTj):

Taking k = ��G=2n, where �G is the solution value from the greedy heuristic
mentioned in Section 2, it follows that

�OPT � ~�

�OPT
� �

Pn
j=1(y

OPT
j + zOPTj)

2n

�G

�OPT
�

Pn
j=1(y

OPT
j + zOPTj)

2n
� � �:

Time complexity for the scaled recursion is O(n�OPT logS=k) = O(n2 logS=�)
as �OPT=k � 4n=�. This can be improved by techniques like those suggested in [6].

5 Conclusions

This paper discusses applications and solution methods for the single node service
provision problem with �xed charges. The problem has applications in telecom-
munications, where �xed charges come from the pricing structure, and in other
areas like production planning with set-up costs. The �xed charges can come from
dual prices in a scenario decomposition of the stochastic service provision problem
without �xed charges.

The paper shows how the LP-relaxation may be solved in O(n) time, giving
theoretical motivation and computational results that indicate that it is worthwhile
to solve the LP and check for integer feasibility. This may be particularly useful in
a scenario decomposition approach for the stochastic service provision problem as
many (FSP)'s are solved and the check may be achieved in O(n) time.

A set of pseudo-polynomial time dynamic programming algorithms are given for
the problem. Preliminary, computational results show that dynamic programming
is a fast and robust approach to solve the problem to optimality. A fully polynomial
time approximation scheme is also given.

The original motivation was to �nd a pseudo-polynomial algorithm to solve
subproblems in a scenario decomposition of the stochastic version of the service

provision problem. We have shown that such algorithms exist, but only more work
can show if such decomposition schemes make it possible to solve hard stochastic
problems. The motivation for this future work on decomposition is not speed, but
being able to solve or bound problem instances that are too di�cult for branch and
bound with LP based bounds.

References

[1] M. De Prycker. Asynchronous Transfer Mode, Solution for Broadband ISDN.
Prentice Hall, New Jersey, 1995.

[2] S. Dye, L. Stougie, and A. Tomasgard. Approximation algorithms and relax-
ations for a service provision problem on a telecommunication network. Working
paper #2-98, Department of industrial economics and technology management,
Norwegian university of science and technology, N-7034 Trondheim, Norway,
1998., 1998.

[3] S. Dye, L. Stougie, and A. Tomasgard. The stochastic single node service
provision problem. Working paper #3-98, Department of industrial economics
and technology management, Norwegian university of science and technology,
N-7034 Trondheim, Norway, 1998, 1998.

[4] S. Dye, A. Tomasgard, and S.W. Wallace. Feasibility in transportation networks
with supply eating arcs. Networks, 31:165{176, 1998.

[5] O.H. Ibarra and C.E. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. J. Assoc. Comput. Mach., 22:463{468, 1975.

[6] E.L. Lawler. Fast approximation algorithms for knapsack problems. Mathemat-
ics of Operations Research, 4(4):339{356, 1979.

[7] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley & sons, 1990.

[8] R. Onvural. Asynchronous Transfer Mode Networks: Performance Issues.
Artech House, Boston, 1994.

[9] Asgeir Tomasgard, Jan A. Audestad, S. Dye, Leen Stougie, Maarten H. van der
Vlerk, and Stein W. Wallace. Modelling aspects of distributed processing in
telecommunication networks. Annals of Operations Research, 82:161{184, 1998.

