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Abstract

This paper presents an application of a Bayesian nonparametric method to hypothe-
sis testing between exponential and increasing failure rate (IFR) distributions. The
weighted gamma process is selected as a prior on the space of non-decreasing failure
rates. Monte Carlo simulations of the weighted Chinese restaurant process provide
an approximation to the posterior probability of each hypothesis.

1 Introduction

In reliability theory, the failure distribution represents a probabilistic description of
the length of time during which a device is operative. One of the most frequently
used distributions for this purpose is the exponential distribution. It has the mem-
oryless property which characterises the failure distribution of devices which do not
wear out with time. Hence it is crucial to reliability practitioners and researchers
to test whether or not lifetimes of devices are exponentially distributed.

Against which class of failure distributions should we conduct a hypothesis
testing of exponentiality? Some devices and structures deteriorate with time and
it is useful to test if they show some ageing as opposed to random failures implying
the exponential failure distribution.

The literature on testing for exponentiality is extensive. In particular, there are
several di�erent approaches to testing exponentiality against the increasing failure
rate (IFR) alternative. For instance one can construct a test based on the total
time on test transform or normalised spacings. For details the reader is referred to
Barlow, et al. [2] and Doksum and Yandell [3].

In this paper, we mainly apply the results in Lo and Weng [7], which include
those of Dykstra and Laud [4] as a special case.

The outline of this paper is: �rstly our life testing model is described. Then
we set a framework of a hypothesis testing of exponentiality vs IFRness from a
nonparametric Bayesian perspective. In section 4, the weighted gamma process is
introduced as our prior for the set of non-decreasing hazard rates. By an application



of existing theorems, the posterior quantities of our interest are simpli�ed. Section
5 includes a description of the weighted Chinese restaurant process, which is used
to obtain a Monte carlo approximation to the posterior quantities of our interest.

2 Life testing models

Consider a life testing situation in which n new items are tested. Their lifetimes are
assumed to be independent and identically distributed. LetN � fN(t) : t 2 [0;1)g
be a counting process representing the number of operative units at time t and the
testing is terminated at a prespeci�ed time T 2 (0;1). Let x1; � � � ; xk (k � n)
denote the failure times of n items on test, out of which k fail prior to or at T and
the lifetimes of the remaining n�k items are censored. Let F (�) be the cumulative
distribution function for each item with density f(�). Then the survival function
corresponding to F (�) and its hazard rate function are respectively denoted by

�F (t) = 1� F (t)

r(t) =
f(t)
�F (t)

The likelihood function of r(�) given the data becomes

L (r(�) j x1; � � � ; xk; Y (�)) =
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where IfAg is the indicator function for set A and Y (t) denotes the number of
remaining items on test just prior to t (cf. Lo and Weng [7, Example 2.1 on page
230]).

We follow a model suggested by Lo and Weng [7], for which each hazard rate
r(�) can be represented as a mixture of a known kernel with respect to some �nite
measure. Suppose that a nonnegative kernel �(tj�) on ([0; T ] � <;F � B) can be
prespeci�ed, where < is the set of real numbers and F and B are Borel ���elds of
[0; T ] and <, respectively. Also assume that the following representation for r(�)

r(t j�) =
Z
<
�(tj�)�(d�) t 2 [0; T ]

where � is a member of the space of �nite measures on (<;B) denoted by � andR
r(tj�)dt is �nite.
Under this mixture model for the hazard rates, the likelihood function is given

by

L (�(�) j x1; � � � ; xk; Y (�)) =
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3 Hypothesis testing of exponentiality vs IFR-

ness

Our main interest is to �nd evidence of the IFR property from failure data against
their exponentiality. Null and alternative hypotheses are de�ned as follows.

H0 : X1; � � � ; Xn are i:i:d: exponential.
HA : X1; � � � ; Xn are IFR, but not exponential.

Firstly, we assign prior probabilities to hypotheses denoted by P (H0) and P (HA).
Secondly, Bayes theorem enables us to compute the posterior probability of each
hypothesis. For instance, the posterior probability of the null hypothesis becomes

P (H0 j x1; � � � ; xk; Y (�)) =

P (H0)
R1
0 L(� j x1; � � � ; xk; Y (�))�(d�)

P (H0)
R1
0 L(� j x1; � � � ; xk; Y (�))�(d�) + P (HA)

R
� L(�(�) j x1; � � � ; xk; Y (�))G(d�(�))

where

L(� j x1; � � � ; xk; Y (�)) =
n!

(n� k)!
�ke��[

Pk

i=1
xi+(n�k)T ]

and �(d�) and G(d�(�)) denote priors for � and �(�) , respectively. Finally, one can
make a decision by comparing P (H0 j x1; � � � ; xk; Y (�)) with P (HA j x1; � � � ; xk; Y (�)),
namely, choose the hypothesis whose posterior probability is the largest. If a loss
function is assessed, then the posterior expected loss with respect to each hypothesis
needs to be evaluated.

As seen above, we need to compute

Z 1

0
L(� j x1; � � � ; xk; Y (�))�(d�) (1)Z

�
L(�(�) j x1; � � � ; xk; Y (�))G(d�(�)): (2)

In general, (1) can be easily evaluated. In particular, if �(d�) is a gamma distri-
bution, then (1) is a Pareto density. On the other hand, evaluating (2) is quite
diÆcult. We assume that a prior for �(�) is a gamma process and we will ap-
proximate (2) via a weighted Chinese restaurant process. Details are given in the
following sections.

4 Prior distributions for hazard rates

Our choice of a prior for �(�) is a weighted gamma process, de�ned below.

De�nition 4.1 Let �(s); s � 0 be a function with �(0) � 0. A continuous time
stochastic process Z � fZ(s); s � 0g is referred to as a gamma process with a
shape function �(s); s � 0 if the following properties are held.

1. Z(0) � 0;

2. Z has independent increments;



3. for t > s; Z(t)� Z(s) � gamma(�(t)� �(s); 1).

A generalisation of Z is de�ned next (cf. Dykstra and Laud [4, p. 357], Lo and
Weng [7, pp. 231-232]). Let �(s) be a nonnegative �-integrable function de�ned
on <. A new continuous time stochastic process de�ned by

W (t) =
Z
[0;t)

�(s)dZ(s); t 2 [0;1)

is referred to as an extended (weighted) gamma process with shape function �(�)
and scale function �(�).

We assume that f�(t); t � 0g is an extended gamma process with shape function
�(�) and scale function �(�) with its distribution denoted by G(d�(�) j�(�); �(�)).
Now we are ready to evaluateZ
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Several existing theorems can be applied to simplify (3). This is explained step by
step below:

By Proposition 3.1 of Lo and Weng [7, pages 232{233], (3), which is also the
Laplace transform of the prior for �(�), can be updated.
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where f(�) =
R
< Y (s)�(sj�)ds. Then Lemma 3.1 of Lo and Weng [7, pages 233{234]

is repeatedly applied to interchange the order of integrals as follows.
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(5) still has multiple integrals which make computation very diÆcult. How-
ever, through combinatorial techniques, (5) can be converted into a function of
uni-dimensional integrals. Some notation is introduced before presenting a simpli-
�cation of (5).

Consider a set of n elements, S = f1; : : : ; ng. Let p and n(p) be a partition of
S and the number of cells of p, respectively. Ci denotes the ith cell of p and ei
represents the number of elements in Ci. Applying Lemma 2 of Lo [6, page 353],
we obtain

(5) = C
X
p

n(p)Y
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where above terms are summed over all the possible partitions of f1; : : : ; kg. Since
the case of non-decreasing failure rates corresponds to �(tj�) = If��tg (See Dykstra
and Laud [4] and Lo and Weng [7, page 239]), we have
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where min(i) = minfxl : l 2 Cig.
When jSj is large, a direct computation of (7) is intractable, hence an approx-

imation method is required to evaluate it. The next section describes a weighted
Chinese restaurant process, which enables one to approximate (7).

5 Monte Carlo approximations to the posterior

probabilites

The Chinese restaurant process is a random mechanism to sequentially partition a
group of \people" denoted by S = f1; : : : ; ng into \tables" denoted by fC1; : : : ; Cn(p)g



where n(p) denotes the number of tables, i.e., subgroups (see Aldous [1], Kuo [5]).
An importance sampling variant of it called the weighted Chinese restaurant pro-
cess is used to approximate (7), which takes into account of similarities in failure
times, xjs. The following description of the Chinese restaurant process is based on
Lo, Brunner and Chan [8] to which the reader is referred for details.

Let �(C) de�ne the marginal weight for a table C by

�(C) =
Z Y

j2C

wj(�)�(d�)

where wj(u) is a nonnegative �nite \likelihood" weighting function for j 2 S and
�(du) is a \prior" mixing major. We also de�ne a \predictive" weights of r 62 C
given C by the ratio

�(rjC) =

(
�(r; C)=�(C) if �(C) 6= 0
0 if �(C) = 0:

The weighted Chinese restaurant process proceeds as follows.
Step 1. Set �(0) = �(1). Assign 1 to C1 with probability �(1)=�(0) = 1.
Step r (r = 2; : : : ; n). From Step r � 1, we have tables C1; : : : ; Cn(p) with

their respective sizes e1; : : : ; en(p).

� Compute �(r � 1) = �(r) +
P

1�i�n(p) ei�(rjCi).

� Assign r to a new table Cn(p)+1 with probability �(r)=�(r � 1);
otherwise, assign r to Ci with probability ei�(rjCi)=�(r�1); i =
1; : : : ; n(p).

� If r is assigned to a new table, n(p) n(p) + 1; otherwise n(p)
stays the same.

A density of the above algorithm is given by

q(pj�;w) = �(p)=�n�1
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Rewriting (7) we get
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:

Generate suÆciently large number of partitions p1; � � � ;pM according to the density
q(pj�;w) of the weighted Chinese restaurant process. Then an approximation of
(8) is given by

1

M
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h(pk)�n�1(pk)

where

h(p) =
n(p)Y
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Z
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"
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#ei
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6 Concluding remarks

This paper presents a test to detect IFR failure data against no-ageing data, i.e.
exponentiality of failure data. The gamma process is used as a prior for the set
of non-decreasing failure functions. The posterior quantities are obtained by ap-
proximating integrals via weighted Chinese restaurant processes. The approach
taken here is straightforward and a decision is based on the posterior probabil-
ity of hypothesis. This is in contrast to some methods suggested in the literature
based on the (asymptotic) distribution of test statistics, methods which violate the
Likelihood Principle.
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