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Abstract
The Competitive Prize Collection Problem(CPCP)involves two autonomousplayers
competingto collectafixednumberof contestableprizeslocatedin theEuclideanplane.
WeproposeaStrategic PlanningArchitecture(SPA) for hierarchicallystructuringthede-
cisionproblemof eachplayerin termsof planninghorizon,aggregationof prizes,contin-
gency planning,cognizanceof opponent,anddynamicresponsemonitoring.To evaluate
the difficulty of probleminstances,andcomparethe performanceof playerstrategies,
we designa computationaltournament.However, theeffectivenessof a playerstrategy
for theCPCPcannotbeevaluatedin isolationfrom otherstrategies,sincea strategy can
only beevaluatedagainstanotherstrategy, onefor eachplayer. In addition,to addressthe
circularnatureof benchmarkprobleminstancesandeffectivestrategies,weconsiderfirst
robustnessof performanceonageneralclassof probleminstancesfollowedby expected
performanceon aclassof bad-caseprobleminstances.

1 Introduction

JohnstonandGiffin [3, 4, 5, 6] introducedtheCompetitive Prize Collection Problem
(CPCP).Let

���������
	
	
	��
���
beasetof “contestable”prizes. Associatedwith eachprize��� �

is a location ����� �
� ��� in the Euclideanplaneanda value ����� � . For the CPCP,
two independentplayers, ! and " , with given initial locations, ���$# �
� #%� and ���'& �
� &(�
respectively, movecontinuouslyat thesameconstantspeedin theEuclideanplane.Each
playerhasthe sameobjective: to collect asmuchin total prize valueaspossibleuntil
the overall deadline, ) , expires. The valueof eachprize is only awardedto the first
playerwho visits. A prize location that is visited simultaneouslyby both playershas
its associatedvaluesharedequally. At all times,eachplayerhasperfectobservationof
the stateof the gameposition, i.e. wherethe playersare currently locatedandwhich
prizesremainunclaimed. Fekete and Schmitt [1] study a similar problemcalled the



CompetingSalesmenProblem(CSP),in which playerstake turns,moving oneedgeat a
time within a graph,with customerslocatedat theverticesof thegraph.They focuson
establishingwhethera playercanavoid a lossor forcea draw in thegraph-basedCSP,
mainly consideringthespecialcasewherethegraphis a tree.

A gameisadescriptionof strategic interactioninvolving twoormoredecisionmakers
calledplayers.It includesconstraintsonactionsthatplayerscantakeandplayers’inter-
ests,but doesnot specifytheactionsthatplayersdo take (OsborneandRubinstein[8]).
TheCPCPis aperfectinformationgame,i.e.eachplayerhascompleteinformationabout
theopponent’s positionandaboutthechoicesavailableto theopponent.Whenthereis
only a singleplayer, thecorrespondingdecisionproblemis a well-definedoptimization
problem,which may be computationallydifficult to solve but only the choicesof the
singledecisionmaker determinethefinal outcome.Whentherearemultiple players,no
oneplayercompletelycontrolsthefinal outcome,sowhat is meantby a gooddecision
mustbe definedbeforean attemptis madeto find one. Computationally, a strategy is
an algorithmthat,given thecurrentstateof the game,will determineexactly onelegal
movement.In theCPCP, playersdeterminetheiractionssimultaneously, observethenew
stateof thegamefollowing theexecutionof thataction,andrepeattheprocedureuntil
the gameterminates.Eachplayer’s decisionsaredependentuponthe currentlocation,
theopponent’slocationandpreviousactions,andthelocationandvalueof theremaining
prizes.Thedifficulty is how to usethelimited computationalresourceeffectively.

This paperis concernedwith two majorengineeringcornerstonesin thestudyof the
CPCP. The first (Section2) is the designof a genericstrategy architecturefor hierar-
chically structuringthe decisionproblemof eachplayer, within which a morespecific
strategy may be developed. Although any numberof strategiesmay be proposedfor
theCPCP, we identify thosestructuresandfeaturescommonto a numberof strategies.
The second(Section3) is the designof computationalexperimentsto evaluatethe ef-
fectivenessof strategiesandaccountfor differencesin difficulty of probleminstances.
Establishingbenchmarksetsof bothproblemsinstancesandopposingstrategiesraisesa
numberof significantissuesthatdo not arisein thecorrespondingevaluationof heuris-
tics for combinatorialoptimizationproblems. Section4 draws someconclusionsand
suggestssomefutureresearchdirections.

2 Strategic Planning Architecture

Strategic planningnecessarilyinvolves both long-term, medium-termand short-term
considerations.A scenariois a descriptionof the futureandthe processof how to get
therefrom the present(Meristö [7]). Within a planninghorizon,a numberof scenar-
ios regardingthe movementsof both playersand the prizesthey collect may be pro-
posed. In orderto evaluateandcomparethesescenarios,someassumptionsaboutthe
rationality (consistency in pursuitof objectives)and intelligence(knowing everything
we caninfer aboutthe situation)of the opponentarerequired. Oncethe future conse-
quencesof variousscenariosareunderstood,it thenremainsto decideuponsomeaction
in theimmediate-term.Thesethreebuilding blocks— the interactionof planninghori-
zons,contingentplanninganddynamicresponseto the opponent’s behaviour — form
thegenericarchitecturethatis developedin this section.



2.1 Hierarchical Decision Structure

Thenecessityto makedecisionsimpliesthatthereis acontext in whichadecisionprob-
lem is formulated. This context, which we will call a frame, describesthe prizesthat
are relevant and accessible,the structuralaggregation of the prizes,a player, and the
opponent.Supposewe fix a planninghorizonandrestrict the regional focuson prizes
considered.Thebasicdecisionproblemis to determinehow thegameis likely to evolve
overthedurationof thisplanninghorizon.Theplayersmayalsohavedirectivesto follow
or surrogateobjectives.Thefollowing attributesaresufficient to definea frame,andare
definedasfollows:

Horizon. The planninghorizonrepresentshow far into the future to plan, andcanbe
fixed,variable, rolling or dynamic.

Scope. Thescopedescribesthesubsetof prizesthatmaybeconsidered,how thevisibil-
ity of theplayersmaybelimited, how theprizesmaybeaggregated,thestructure
of theaggregation(e.g.,into clusters),andany stratificationof theprizes.

Directives. A directive is a constraintplaceduponthe decisionproblem. Thesecon-
straintsmay include restricteddisplacementof the player, target locations,time
windows on harvestingwithin favourableregions,maintainingan avoidancedis-
tancefrom theopponentor somelowerboundon harvestingrate.

Surrogates. Surrogateobjectivesdescribethegoalorpurposeof thedecisionproblemas
thesemaybedifferentfrom theoverall objectiveof theCPCP. Thesemayinclude
harvestingrate,time limit to reachatargetlocation,or milestonesto beattempted.

The Strategic Planning Architecture (SPA) is a hierarchyof frames.The global-
frameis the initial decisionproblemconsideredin a strategy, andhasinfinite planning
horizon, full scope(i.e. all prizesareavailable),no directivesandno surrogates.The
global-frameselectornotonly selectsastrategic planbut theimplementationof thatplan
is itself a framespawnedby theselector. Hence,thedecisionmadeby aselectorprocess
is anotherframe.At eachframe,theselectordefinesadecisionproblemwhosesolutionis
asub-frameof afiner level, i.e. thescopeis smaller(therearefeweravailableprizes),the
planninghorizonis shorter, andmorespecificdirectivesandsurrogatesareapplied.The
coarsenessof thesub-framecouldbedifferent,dependingon which decisionwasmade.
Hierarchicalstructureprovidesfor thedecouplingof decisionsatdifferentplanninghori-
zonsinto strategic, tacticalandoperationalplanning.Moreover, thedecisionstelescope
sincewemakeprogressively finerdecisions,atdecreasinglevelsof aggregation,until an
actualstepis determined.

Theaim of aggregationis to isolatea naturalstrategic structure,local to a particular
frame,suitableandsufficient to determinehow thegamemayevolve over theplanning
horizonof that frame. Thenumberof framesused,their relative planninghorizonsand
theirplanningscopesaredynamicandshouldadaptto thenaturalstructureof theevolv-
ing gamestate. However, this dependsvery muchon what structure(or lack thereof)
there is to exploit. Hence,it may be necessaryto imposesomestructurewhen it is
necessaryto decomposethe decisionproblembut no naturalstructureis apparent.We



wish to maintaina balancebetweenplanninghorizonsbut know thereis alwaysa trade-
off betweenscopeanddetail concomitantwith a computationalbudget. Although the
framework is sufficiently flexible to makeframechoiceandgoal-within-framechoicein-
dependent,thereis asynergy betweenthechoiceof framesandthemethodsusedwithin
the adjoining frames. A methodat one frame attemptsto exploit the structureof the
objectswithin that frameand,hence,any subframewill bebasedaroundtheobjectse-
lected.In addition,thereis strongcouplingbetweenframes,sincedecisionsin oneframe
implementandrefinethedecisionsof thepreviousframesandmodelthefocussedprize
region in moredetail.

2.2 Scenarios and Contingent Evaluation

A scenarioneednot beanexact futurecoursebut ratheranapproximaterepresentation.
Multiple scenarioanalysisinvolvesthedevelopmentof a representative setof mutually
exclusive alternativesandassessingthe player’s responseto eachof thesepossiblefu-
tures.

Contingencyis theanalysisof theconsequencesof asetof actionsincorporatingcon-
ditioning of the futureplanuponsomeclassificationof futurestate(s),i.e. if encounter
future state1then take action1else if encounterfuture state2then take action2. Ide-
ally, wewould like to beableto planfor everypossiblefuturedecisionof our opponent.
However, given a scarcecomputationalresource,this is clearly unrealisticas contin-
gency planningis computationallyexpensive. Therefore,contingency planningmustbe
balancedagainstboth aggregation (the processof selectingandorganisingsignificant
groupsof prizes)andthe certaintyof the evaluationof eachscenario.Thus,the issue
becomeshow to make effective useof the computationalresourceavailableto solve a
rangeof problemsizesandstructures.In otherword, we considerboththe“forest” and
the“trees”simultaneously.

Séguin,Potvin, Gendreau,Crainic andMarcotte[9] outline the functionalcompo-
nentsof a real-timedecisionprocess:

(i) Informationmanagementanddatafusion.

(ii) Situationassessmentandevaluationof alternatives.

(iii) Decision:adecisiondoesnotnecessarilyresultin animmediateaction,rather, the
actionis incorporatedinto a planthatextendsovera rolling time periodknown as
aplanninghorizon.

Thesefunctionalcomponentsareimplementedastwo processesthatoperatewithin the
context of a frame.Theplanner generatesandevaluatesat leastonescenario,but need
not involve contingentplanning. This constitutescomponents(i)–(ii) above. For ex-
ample,NEAREST NEIGHBOUR could be usedasa singlescenarioplanner, or selecting
randomprizescouldbeusedasa multiple scenarioplanner. Theselector decidesupon
a scenariofrom thosegeneratedby theplannerandimplementstheinitial actionsof the
plan. This constitutes(iii) above. Even if only onescenariois proposedby the plan-
ner, theselectormaybenon-trivial asit mustdeterminehow muchof the initial planto
implement.



2.3 Dynamic Response Monitoring

Séguin,Potvin,Gendreau,CrainicandMarcotte[9] distinguishbetweenthreetypesof
planningin a real-timedecisionprocess:

Reactive planning. Short-term,local effect,smallchangesin globalstate.

Incremental planning. Modification, global statedoesnot departtoo muchfrom ex-
pectedstateat thetime theplanwasfirst devised.

Deliberative planning. Mandatoryrevisionwhenstateof theworld departssignificantly
from its predictedstate.

While contingentplanningattemptsto accountfor the future actionsof the opponent,
observationof theopponentis necessaryto determinewhetherreactive, incrementalor
deliberativeplanningis requiredateachframewithin theSPA. Response Monitoring is
acycleof forecastingthelikely targetsof theopponent,observationof whethertheoppo-
nent’s behaviour is consistentwith our prediction,planrefinementand,whennecessary,
triggeringof deliberativeplanning.Eachplayermustdecidehow muchcognizancethey
takeof theiropponent’smovementsandopportunities.

A Dynamic Monitoring System (DMS) is a particularimplementationof theSPA
thatappliesascenarioengineasits plannermoduleandamonitorasits selectormodule:

Scenario Engine. Recommendstheactionthatshouldbetakenfor eachpossibletarget
setof theopponent,proposesandevaluatesa numberof scenariosusinga contin-
gentevaluator.

Monitor. Determinesthe target setthat theopponentis currentlytargetingor likely to
targetandspawnsthesub-framecorrespondingto thatscenario.

Monitoring consistsof forecasting,observation andscenarioselection.A forecast as-
sumesthat it is possibleto predictthe future, assigningprobabilitiesto the occurrence
of eachpossiblefuture. Thus,a forecastis an estimateof what is likely to occur. An
observation is thenotingof aneventasit occurs.

We have developedanimplementationof theSPA/DMS consistingof four dynamic
frames(seeJohnston[4] for details).Thecoarsestframe,thegrid-frame, considersthe
densityof prize value. The cluster-frameconsiderscontingentsequencesof clusters,
theprize-frameconsiderscontingentsequencesof prizes,andthefinestframe,thestep-
frame, considersindividualstepstowardsa singleprizeor a pairof prizes.

3 Computational Tournaments

Two significantCPCPresearchquestionscanbeaddressedvia computationalexperimen-
tationonly:

Understanding Problem Instances. We wish to determinewhat makesa problemin-
stancedifficult, andhow to designdifficult testprobleminstances.This involves



defininganumberof problemclasses,generatinga largenumberof randomprob-
lem instancesfrom eachclass,determiningwhichclassesareseeminglymoredif-
ficult, anddesigninga numberof bad-caseprobleminstancesfrom eachof the
mostdifficult problemclasses.

Effectiveness of Strategies. We wish to understandwhata strategy needsto addressto
besuccessfulandwhichstrategiesareeffectiveonvariousproblemclasses.Wecan
identify which arethe mostpromisingstrategiesin termsof worst performance,
expectedperformance,andtheir nemesis.

Computationalexperimentationwith vehicle routing andschedulingproblemsusually
comparestherelativequalityof solutionsof differentheuristicsin solvingspecificclasses
of problems.However, theeffectivenessof a strategy for theCPCPcannotbeevaluated
in isolationfrom otherstrategies,sincea strategy canonly beevaluatedagainstanother
strategy, onefor eachplayer.

Computationalexperimentsthatcomparetheperformanceof strategiestaketheform
of a computationaltournamentin which a numberof strategies play off againstone
anotheron a setof probleminstances.A problem instance, * , is completelydefined
by the numberof prizes,the locationof eachprize, the valueof eachprize, the initial
locationof eachplayer, theoverall deadline,andthestepsize, + . A simulation battle
is asinglesimulatedplayof theCPCPonaparticularprobleminstancewith aparticular
pair of strategies,onefor eachplayer. Thisconstitutesa (simulated)dynamicevaluation
of thechosenstrategiesonthegivenprobleminstance.Thereare,however, two principal
difficultiesin evaluatingtherelativeeffectivenessof strategies:

(i) How shouldtheperformanceof aparticularstrategy againstanumberof opposing
strategiesbeweightedwhensomestrategiesmaybemoredifficult to play against
thanothers.

(ii) How shouldthe performancebetweentwo strategies,over a numberof problem
instances,be weightedwhensomeprobleminstancesmaybemoredifficult than
others.

Hence,the effectivenessof strategies and the difficulty of probleminstancesare not
independentinvestigations.Probleminstancesarerequiredto evaluatetheperformance
of strategies,andstrategiesarerequiredto evaluatethedifficulty of probleminstances.To
measureastrategy’ssuccesswemustconsiderbothrobustness(worst-caseperformance)
andexpectedperformance(average-caseperformance).Moreover, Hooker [2] argues
thatthefirst heuristicsdesignedfor anew problemdeterminethebenchmarkproblemset
againstwhichfutureheuristicswill beevaluated— sincethesearetheprobleminstances
the heuristicdoeswell on — and, circularly, the benchmarkproblemset determines
the future heuristicsdesignedfor the problem— sincethey mustperformwell on the
benchmarkproblemsto beconsideredgood.

To addressall theseissuesweadoptthefollowing four-stepapproach:

Step I. Specificationof generalclassesof probleminstances(Section3.2).



Step II. Preliminarytournamentsbetweena rangeof strategies,on thegeneralproblem
instanceclasses.Evaluatewhich strategiesaremostrobuston eachproblemclass
by worst-caseperformanceonaverage-caseproblems(Section3.3).

Step III. Staticestimationof theexpectedvalueof a probleminstancefor eachplayer
(Section3.1), and sensitivity analysisof probleminstances,to designbad-case
probleminstances(Section3.2).

Step IV. Final tournamentsbetweenthemostrobuststrategiesof thepreliminarytour-
namentson a setof bad-caseprobleminstancesfrom eachof the mostdifficult
problemclasses.Evaluationis on thebasisof expected,average-caseperformance
onbad-caseprobleminstances(Section3.3).

3.1 Expected Value of the Game

A strategy will oftenwish to estimatethevalue �%,# �-*%� or �%,& �.*/� of a probleminstance,
usually undersomescenarioof how the immediatefuture will proceed. A dynamic
estimator of thevalueof a probleminstanceis a procedurethatestimates�0,# �.*/� from
theresultsof at leastonesimulationbattle.A static estimator of thevalueof aproblem
instanceis aprocedurethatestimates�0,# �-*%� withoutperformingany simulationbattles.

Two-persongametheoryis divided into constant sum games, in which thesumof
the payoffs is constantover every pair of playeractions,andgeneral sum games, in
which thesumof thepayoffs neednot beconstantoverpairsof playeractions(Osborne
andRubinstein[8]). Competitionis perfect in a constantsumgamesinceany payoff
which oneplayerdoesnot receive mustbe receivedby theotherplayer. However, in a
generalsumgame,competitionis notperfect.Generalsumgamesarefurthersubdivided
into noncooperative, in which any type of collusion,suchascorrelatedstrategiesand
sidepayments,is forbidden,andcooperative, in whichall suchcooperationis permitted.
A noncooperativegamefocusesonsetsof possibleactionsof individualplayers,whereas
a cooperative game(or coalition game) focuseson thesetsof possiblejoint actionsof
groupsof players.When ) �21 theCPCPis aconstantsumgamesincethereis always
time to claim onemoreprize. However, when )43 1 the CPCPis a noncooperative
general-sumgame,sinceit is possiblethat theoverall deadlineexpiresbeforeall prizes
areclaimed. In the latter case,the playersmay exhibit qualitiesof cooperation,since
bothplayerscouldbebetteroff by notenteringinto timeconsumingconflict.

Let �5#��-*�6
! 7 a
� "87 b � denotethe total prize valueclaimedby player ! in a

simulationbattleonprobleminstance* in whichplayer ! adoptsstrategy a andplayer "
adoptsstrategy b. Let 9�: bethe infinite setof all possibleplayerstrategies. Thevalue
of the game * (or the value of problem instance * ), �0,# �-*%� , is definedas the Nash
equilibrium value in mixedstrategies(seeOsborneandRubinstein[8]) to player ! of
theinfinite two playergamein whichbothplayers’purestrategiesare 9�: , if suchaNash
equilibrium exists. Let 9 be a givenfinite setof playerstrategies. The computational
maximin value of the game * (or thecomputational maximin value of the problem
instance * ), �0;# �-*%� , for thegiven 9 , is

� ;# �-*%� �=<?>A@
a BDC
E <GFIH

b BDC �5#J�-*�6
!K7 a
� "L7 b �AM



Finally, �N&O�.*�6
!K7 a
� "L7 b � , �0,& �-*%� and � ;& �-*%� aredefinedsimilarly for player " .

3.2 Classes of Problem Instances

Theprize class (P-class)focuseson thelayoutandvalueof individualprizes,generated
by construction,or drawn from someprobabilitydistribution,or througha combination
of these.Thecluster class (C-class)focusesonthelayoutandvalueof individualclusters
of prizes.Thedensity class (D-class)focuseson thecompositionof prizevaluedensity
features. Theseprobleminstanceclassescan be describedas average-caseproblems
sincethereis noprior reasonto expectany oneprobleminstanceto beany moredifficult
thanany other.

A problemis strategically difficult eitherwhenexperimentationshows that payoff
estimatedby tacticalor strategic analysisis not realised(predictability),or whensmall
variationsin theprobleminstancesproducesignificantchangesin thetacticsrequiredto
realisetheexpectedpayoff (sensitivity). Weexpectthataneasyprobleminstancewould
correspondto onefor which it is easyto estimateits value,i.e. thebetterstaticestimators
would give approximatelythesamevalue.Hence,oneway to definea difficult problem
instanceis asaprobleminstancefor which thereis ahighvariability betweenestimators
of thevalueof thatprobleminstance,i.e. a difficult probleminstanceis onethat is hard
to predictaccuratelyandhencehardto makegoodstrategic andtacticaldecisionsfor.

To defineaquantitativemeasureof probleminstancedifficulty, choosetwo (staticor
dynamic)estimators,�'P and �$P P . Definethedifficulty, Q$�.*/� , of probleminstance* by

Q��-*%� � �SR � P# �-*%�JTU� P P# �.*/�VRDW�R � P& �-*%�JTU� P P& �.*/�VRX�Y�Z �.*/�
where

Z �.*/� is the maximumpossiblevalue in prizesthat the two playerscan jointly
collect if they completelycooperate.A probleminstance* is, therefore,bad-caseifQ$�.*/� is significantlynonzero.

The constructionand improvementparadigmmay be applied to finding bad-case
probleminstances.“Improving” the difficulty of an existing constructedproblemin-
stanceinvolvesperturbingthe initial player locations,prize locations,prize values,or
overalldeadline.Weproposethatbad-caseprobleminstancescanbefoundby searching
possibleinitial player locationsfor player ! andplayer " initial locationsthat maxi-
mize Q��-*%� , while fixing theprizelocations,prizevalues,andtheoverall deadline.Local
searchis not appropriatesincethediscretenatureof Q��-*%� may leadto a spatialplateau
of constantvalues,with respectto perturbationsin one spatialvariable,which (non-
metaheuristic)local searchoftenfindsdifficult to searchsuccessfully.

3.3 Effectiveness and Robustness of Strategies

Wecanevaluate�5#��.*�6
!K7 a
� "L7 b � and �5&O�-*�6
![7 a

� "L7 b � by dynamicsimulation
battle.However, oneplayermaybeableto accumulatemorevaluethantheothersimply
becauseof theinequityof thestartinglocations.A solutionto thisproblemis to repeatthe
simulationbattlewith the initial playerlocationsreversedandlet the scorebe the sum
of the original andreversedbattle results. We expect that strategiesof approximately



equivalenteffectivenesswill claim approximatelythesametotal in prizesfrom the two
simulationbattles.We alsoexpectthat if onestrategy dominatesanotherthenit will do
so,on average,from bothorientationsof theinitial playerlocations.

A further issueis the comparabilityof a resultingscoreon one probleminstance
with the scoreon another. Benchmarkingthe scoreagainstthe expectedvalueof the
probleminstancewouldbeideal,but wemustsettlefor thecomputationalmaximinvalue
of the probleminstance.In addition, the total prize pool for eachprobleminstanceis
standardised.Hence,the resultingscores, \]#]�.*�6^! 7 a

� "_7 b � for player ! and\`&a�-*�6
!b7 a
� "c7 b � for player " , for thesimulationbattlebetweenplayer ! adopting

strategy a andplayer " adoptingstrategy b onprobleminstance* , aredefinedby\`#J�-*�6
!K7 a
� "L7 b � � �5#J�-*�6
![7 a

� "c7 b �]TU� ;# �-*%� W�N&O�-*�6
!K7 b
� "L7 a �JTd� ;& �-*%�\`&a�-*�6
!K7 a

� "L7 b � � �N&O�-*�6
!K7 a
� "L7 b �JTd� ;& �-*%� W�5#J�-*�6
![7 b
� "c7 a �]TU� ;# �-*%�

Considerthemaximinscore,\ ; �.*/� , overaprobleminstance* :\ ; �.*/� � <G>e@
a BDC <GFIHb BDC \]#]�.*�6
!K7 a
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� "f7 b �oWf�5&O�-*�6
!K7 b
� "c7 a �p�Td�m� ;# �.*/�oWq� ;& �-*%�^� 	

Thatis, \ ; �-*%� is thedifferencebetweenthemaximinof thesumof thetotal prizevalue
fromeachorientationof theinitial playerlocationsandthesumof themaximinof thetotal
prize valuefrom eachorientationseparately. If anoptimal (Nashequilibrium) strategy
wereincludedin 9 then \ ; �-*%� � � . This impliesthat \]# and \`& arenot biasedon any
classof probleminstances.

It remainsto definethe robustnessandeffectivenessof an individual strategy. This
canonly beevaluatedfor to asetof opposingstrategies,9 ,andasetof probleminstances,r

. However, the evaluationis differentfor the preliminaryandfinal tournaments.For
thepreliminarytournaments,we wish to evaluatetherobustnessof a strategy, i.e. deter-
minetheworst-caseresultagainstanaverage-casesetof probleminstancesandopponent
strategies.Hence,wedefinetherobustnessof strategy a asthe‘ MIN-MIN’ evaluation\]#J� r 6
!b7 a

� "c749�� �s<GFIH
b BDC <GFIHt B�u \]#]�.*�6
!K7 a

� "f7 b � 	
For the final tournaments,we wish to evaluatethe expectedperformanceof a strategy,
i.e. determinethe average-caseresult againsta bad-casesetof probleminstancesand
opponentstrategies. Hence,we definethe effectivenessof strategy a as the ‘ MEAN-
MEAN’ evaluation

\]#]� r 6
!v7 a
� "L749J� � �R 9wRyx

b BhC
�R r RNxt Bzu \]#J�-*�6
![7 a

� "L7 b � 	



4 Conclusions

Thispaperhasoutlinedtwo importantcontributionsto thestudyof theCPCP. Thestrate-
gic planningarchitecturegivessomegeneralstructureto thedecisionproblemfacedby
a playerin designinga strategy. Contingentanalysisof multiple scenariosis usedin the
planningphase,and forecastingandobservation areusedin the selectionphase. The
experimentaldesignof thecomputationaltournament— asameansof evaluatingtheef-
fectivenessof strategiesandthedifficulty of probleminstances— alsoraiseda number
of difficulties in termsof benchmarkingagainstsetsof opposingstrategiesandclasses
of probleminstances,fairnessof the initial player locations,and the comparabilityof
a numericalscoreacrossprobleminstances.Although no specificstrategieswerede-
fined,nor any tournamentresultspresented,thesedesignissuesillustratethesignificant
differencebetweentheCPCPandstandardvehicleroutingandschedulingproblems.
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