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Abstract

The Competitve Prize Collection Problem(CPCP)involves two autonomouslayers
competingo collectafixednumberof contestablgrizeslocatedin the Euclidearplane.
We proposea Strategic PlanningArchitecture(SFA) for hierarchicallystructuringthede-
cisionproblemof eachplayerin termsof planninghorizon,aggreationof prizes,contin-
geng planning,cognizancef opponentanddynamicresponsenonitoring. To evaluate
the difficulty of probleminstancesand comparethe performanceof player strateies,
we designa computationatournament.However, the effectivenessf a playerstrategy

for the CPCPcannotbe evaluatedn isolationfrom otherstrateyies,sincea stratgy can
only beevaluatedagainstinotherstrateyy, onefor eachplayer In addition,to addresshe
circularnatureof benchmarlprobleminstancesandeffective stratgjies,we consideffirst

robustnes®f performancen ageneraklassof probleminstancegollowedby expected
performancen a classof bad-casgrobleminstances.

1 Introduction

JohnstorandGiffin [3, 4, 5, 6] introducedthe Competitive Prize Collection Problem
(CPCP)LetV ={1,...,n} beasetof “contestable’prizes Associatedvith eachprize
i € V is alocation (z;,y;) in the Euclideanplaneanda valuev; > 0. For the CPCR
two independenplayers, .A and 3, with giveninitial locations,(z4,y4) and(zg, ys)
respectrely, move continuouslyatthe sameconstanspeedn the Euclidearnplane.Each
playerhasthe sameobjective: to collectasmuchin total prize value as possibleuntil
the overall deadline,)\, expires. The value of eachprize is only awardedto the first
playerwho visits. A prize locationthatis visited simultaneouslyby both playershas
its associatedaluesharedequally At all times,eachplayerhasperfectobsenation of
the stateof the gameposition, i.e. wherethe playersare currently locatedand which
prizesremainunclaimed. Fekete and Schmitt[1] study a similar problem called the



CompetingSalesmerProblem(CSP),in which playerstake turns,moving oneedgeata
time within a graph,with customerdocatedat the verticesof the graph. They focuson
establishingvhethera playercanavoid a lossor force a draw in the graph-base SR
mainly consideringhe specialcasewherethegraphis atree.

A games adescriptiorof stratgjic interactionnvolving two or moredecisiormakers
calledplayers.It includesconstraint®n actionsthatplayerscantake andplayers’inter-
ests,but doesnot specifythe actionsthat playersdo take (Osborneand Rubinstein[8]).
TheCPCPis aperfectinformationgamej.e. eachplayerhascompletanformationabout
the opponent positionandaboutthe choicesavailableto the opponent.Whenthereis
only a singleplayer the correspondinglecisionproblemis a well-definedoptimization
problem,which may be computationallydifficult to solve but only the choicesof the
singledecisionmalker determinethe final outcome.Whentherearemultiple players,no
oneplayercompletelycontrolsthe final outcome,so whatis meantby a gooddecision
mustbe definedbeforean attemptis madeto find one. Computationally a stratey is
an algorithmthat, giventhe currentstateof the game,will determineexactly onelegal
movement.In the CPCRplayersdetermingheiractionssimultaneouslyobsene thenewv
stateof the gamefollowing the executionof thataction,andrepeatthe procedureuntil
the gameterminates.Eachplayers decisionsare dependentuponthe currentlocation,
theopponentlocationandpreviousactions andthelocationandvalueof theremaining
prizes.Thedifficulty is how to usethelimited computationatesourceeffectively.

This paperis concernedvith two majorengineeringcornerstones the studyof the
CPCP Thefirst (Section?2) is the designof a genericstratey architecturefor hierar
chically structuringthe decisionproblemof eachplayer within which a more specific
stratgy may be developed. Although any numberof strateies may be proposedfor
the CPCR we identify thosestructuresandfeaturescommonto a numberof stratajies.
The second(Section3) is the designof computationakxperimentsto evaluatethe ef-
fectivenessf stratgiesandaccountfor differencedn difficulty of probleminstances.
Establishingpenchmarlsetsof both problemsnstancesandopposingstratgiesraisesa
numberof significantissueghatdo not arisein the correspondingvaluationof heuris-
tics for combinatorialoptimization problems. Section4 dravs someconclusionsand
suggestsomefutureresearchdirections.

2 Strategic Planning Architecture

Stratgjic planning necessarilyinvolves both long-term, medium-termand short-term
considerationsA scenariois a descriptionof the future andthe processof how to get
therefrom the present(Meristo [7]). Within a planninghorizon,a numberof scenar
ios regardingthe movementsof both playersandthe prizesthey collect may be pro-

posed. In orderto evaluateand comparethesescenariossomeassumptiongboutthe
rationality (consisteng in pursuitof objectves)andintelligence(knowing everything
we caninfer aboutthe situation)of the opponentare required. Oncethe future conse-
guence®f variousscenariogreunderstoodit thenremainsto decideuponsomeaction
in theimmediate-term.Thesethreebuilding blocks— the interactionof planninghori-

zons,contingentplanningand dynamicresponseo the opponent behaiour — form

thegenericarchitecturehatis developedin this section.



2.1 Hierarchical Decision Structure

Thenecessityo make decisionampliesthatthereis a context in which a decisionprob-
lem is formulated. This context, which we will call a frame describeghe prizesthat
are relevant and accessiblethe structuralaggreation of the prizes,a playet andthe
opponent.Supposewe fix a planninghorizonandrestrictthe regional focuson prizes
consideredThebasicdecisionproblemis to determinehow thegameis lik ely to evolve
overthedurationof this planninghorizon. The playersmayalsohave directivesto follow
or surrogateobjectves. Thefollowing attributesaresufficientto definea frame,andare
definedasfollows:

Horizon. The planninghorizonrepresentfiow far into the future to plan, andcanbe
fixed,variable rolling or dynamic

Scope. Thescopedescribeshe subsebdf prizesthatmaybeconsideredhow thevisibil-
ity of the playersmay belimited, how the prizesmaybe aggreated the structure
of theaggreation(e.g.,into clusters) andary stratificationof theprizes.

Directives. A directive is a constraintplaceduponthe decisionproblem. Thesecon-
straintsmay include restricteddisplacemenbf the player targetlocations,time
windows on hanestingwithin favourableregions, maintainingan avoidancedis-
tancefrom the opponenbr somelower boundon hanestingrate.

Surrogates. Surrogatebjectvesdescribeéhegoalor purposef thedecisionproblemas
thesemay be differentfrom the overall objective of the CPCP Thesemayinclude
harestingrate,time limit to reachatargetlocation,or milestonego beattempted.

The Strategic Planning Architecture (SFA) is a hierarchyof frames. The global-
frameis theinitial decisionproblemconsideredn a stratgy, and hasinfinite planning
horizon, full scope(i.e. all prizesare available), no directvesand no surrogates.The
global-frameselectomotonly selectsa stratgic planbut theimplementatiorof thatplan
is itself aframespavnedby the selector Hence the decisionmadeby a selectomprocess
isanotheframe. At eachframe,theselectoidefinesadecisionproblemwhosesolutionis
asub-frameof afinerlevel,i.e.thescopeas smaller(therearefewer availableprizes),the
planninghorizonis shorter andmorespecificdirectvesandsurrogatesreapplied. The
coarsenessf the sub-framecould be different,dependingon which decisionwasmade.
Hierarchicalstructureprovidesfor thedecouplingof decisionsatdifferentplanninghori-
zonsinto strateic, tacticalandoperationaplanning. Moreover, the decisiongelescope
sincewe make progressiely finer decisionsatdecreasingdevelsof aggregation,until an
actualstepis determined.

The aim of aggreationis to isolatea naturalstrateyic structure Jocal to a particular
frame,suitableandsufficient to determinehow the gamemay evolve over the planning
horizonof thatframe. The numberof framesused,their relative planninghorizonsand
their planningscopesaredynamicandshouldadaptto the naturalstructureof the evolv-
ing gamestate. However, this depends/ery much on what structure(or lack thereof)
thereis to exploit. Hence,it may be necessaryo imposesomestructurewhenit is
necessaryo decomposehe decisionproblembut no naturalstructureis apparent.We



wish to maintaina balancebetweerplanninghorizonsbut know thereis alwaysatrade-
off betweenscopeand detail concomitantwith a computationabudget. Although the
framawvork is sufficiently flexible to make framechoiceandgoal-within-framechoicein-

dependentthereis a synegy betweerthe choiceof framesandthe methodsusedwithin

the adjoining frames. A methodat one frame attemptsto exploit the structureof the
objectswithin thatframeand,hence,ary subframewill be basedaroundthe objectse-
lected.In addition,thereis strongcouplingbetweerframes sincedecisionsn oneframe
implementandrefinethe decisionsof the previous framesandmodelthe focussedrize
regionin moredetail.

2.2 Scenariosand Contingent Evaluation

A scenarioneednot be an exactfuture coursebut ratheran approximateepresentation.
Multiple scenaricanalysisinvolvesthe developmentof a representatie setof mutually
exclusive alternatvesand assessinghe players responsdo eachof thesepossiblefu-
tures.

Contingencyis theanalysisof theconsequences a setof actionsincorporatingcon-
ditioning of the future plan uponsomeclassificationof future state(s),.e. if encounter
future statelthen take actionlelse if encounteffuture state2then take action2 Ide-
ally, we would lik e to be ableto planfor every possiblefuture decisionof our opponent.
However, given a scarcecomputationakesource this is clearly unrealisticas contin-
geng planningis computationallyexpensve. Therefore contingenyg planningmustbe
balancedagainstboth aggregation (the processof selectingand organisingsignificant
groupsof prizes)andthe certainty of the evaluationof eachscenario.Thus,the issue
becomedow to make effective useof the computationaresourceavailableto solve a
rangeof problemsizesandstructures.n otherword, we considerboththe “forest” and
the“trees” simultaneously

Séguin, Potvin, GendreauCrainic and Marcotte[9] outline the functionalcompo-
nentsof areal-timedecisionprocess:

() Informationmanagemeranddatafusion.
(i) Situationassessmermndevaluationof alternatves.

(i) Decision:adecisiondoesnot necessarilyesultin animmediateaction,rather the
actionis incorporatednto a planthatextendsover arolling time periodknown as
aplanninghorizon.

Thesefunctionalcomponentareimplementedastwo processeshatoperatewithin the
contet of aframe. The planner generatesandevaluatesat leastonescenarioput need
not involve contingentplanning. This constitutescomponentgi)—(ii) above. For ex-

ample,NEAREST NEIGHBOUR could be usedasa single scenarioplanner or selecting
randomprizescould be usedasa multiple scenarigplanner The selector decidesupon
a scenaridrom thosegeneratedby the plannerandimplementgheinitial actionsof the
plan. This constituteg(iii) above. Evenif only onescenariois proposedoy the plan-
ner, the selectormay be non-trivial asit mustdeterminehow muchof theinitial planto

implement.



2.3 Dynamic Response Monitoring

Séguin,Potvin, GendreauCrainic and Marcotte[9] distinguishbetweenthreetypesof
planningin areal-timedecisionprocess:

Reactive planning. Short-termjocal effect, smallchangesn globalstate.

Incremental planning. Modification, global statedoesnot departtoo muchfrom ex-
pectedstateat thetime the planwasfirst devised.

Deliberative planning. Mandatoryrevisionwhenstateof theworld departssignificantly
fromits predictedstate.

While contingentplanningattemptsto accountfor the future actionsof the opponent,
obsenation of the opponeniis necessaryo determinewhetherreactve, incrementalr
deliberatve planningis requiredat eachframewithin the SFA. Response M onitoring is
acycle of forecastinghelik ely targetsof theopponentpbsenationof whethertheoppo-
nents behaiour is consistentith our prediction,planrefinementeand,whennecessary
triggeringof deliberatve planning.Eachplayermustdecidehow muchcognizancehey
take of their opponents movementsandopportunities.

A Dynamic Monitoring System (DMS) is a particularimplementatiorof the SFA
thatappliesascenarioengineasits plannermoduleandamonitorasits selectormodule:

Scenario Engine. Recommendshe actionthatshouldbe takenfor eachpossibletarget
setof the opponentproposesandevaluatesa numberof scenariosisinga contin-
gentevaluator

Monitor. Determineghe target setthatthe opponents currentlytargetingor likely to
targetandspavnsthe sub-framecorrespondingo thatscenario.

Monitoring consistsof forecasting,obsenation and scenarioselection. A forecast as-
sumesthatit is possibleto predictthe future, assigningprobabilitiesto the occurrence
of eachpossiblefuture. Thus,a forecastis an estimateof whatis likely to occur An
observation is thenotingof aneventasit occurs.

We have developedanimplementatiorof the SFA/DMS consistingof four dynamic
frames(seeJohnstor{4] for details). The coarsestrame,the grid-frame considerghe
densityof prize value. The clusterframe considerscontingentsequencesf clusters,
the prize-frameconsidersontingentsequencesf prizes,andthefinestframe,the step-
frame considersndividual stepstowardsa singleprize or a pair of prizes.

3 Computational Tournaments

Two significantCPCPresearclyuestioncanbeaddressedia computationaéxperimen-
tationonly:

Under standing Problem Instances. We wish to determinewhat makesa problemin-
stancedifficult, andhow to designdifficult testprobleminstances.This involves



defininga numberof problemclassesgeneratinga large numberof randomprob-
leminstancedrom eachclassdeterminingwhich classesareseeminglymoredif-
ficult, and designinga numberof bad-caseprobleminstancesrom eachof the
mostdifficult problemclasses.

Effectiveness of Strategies. We wish to understandvhata stratgly needso addresto
besuccessfuindwhichstratgiesareeffective onvariousproblemclassesWe can
identify which arethe mostpromisingstratgiesin termsof worst performance,
expectedperformanceandtheir nemesis.

Computationakexperimentatiorwith vehicle routing and schedulingproblemsusually
comparesherelative quality of solutionsof differentheuristican solvingspecificclasses
of problems.However, the effectivenessof a stratgy for the CPCPcannotbe evaluated
in isolationfrom otherstratayies,sincea stratgy canonly be evaluatedagainstanother
stratgyy, onefor eachplayer

Computationaéxperimentghatcompareheperformancef stratgjiestake theform
of a computationaltournamentin which a numberof stratgies play off againstone
anotheron a setof probleminstances.A problem instance, p, is completelydefined
by the numberof prizes,the location of eachprize, the value of eachprize, the initial
locationof eachplayer, the overall deadline,andthe stepsize,A. A simulation battle
is asinglesimulatedplay of the CPCPon a particularprobleminstancewith aparticular
pair of stratgjies,onefor eachplayer This constitutesa (simulated)dynamicevaluation
of thechoserstratgiesonthegivenprobleminstance Thereare,however, two principal
difficultiesin evaluatingtherelative effectivenesof stratagies:

(i) How shouldtheperformancef a particularstrategy againsta numberof opposing
stratgiesbe weightedwhensomestratgjiesmay be moredifficult to play against
thanothers.

(i) How shouldthe performancebetweentwo stratgies, over a numberof problem
instancespe weightedwhensomeprobleminstancesnay be moredifficult than
others.

Hence,the effectivenessof strataies and the difficulty of probleminstancesare not
independeninvestigations Probleminstancesrerequiredto evaluatethe performance
of stratgies,andstratgiesarerequiredo evaluatethedifficulty of probleminstancesTo
measura strat@y’s successve mustconsidebothrobustnesgworst-casgerformance)
and expectedperformancegaverage-cas@erformance). Moreover, Hooker [2] amgues
thatthefirst heuristicddesignedor anew problemdeterminghebenchmarlproblemset
againswhichfutureheuristicawill beevaluated— sincethesearetheprobleminstances
the heuristicdoeswell on — and, circularly, the benchmarkproblem set determines
the future heuristicsdesignedor the problem— sincethey mustperformwell on the
benchmarkproblemso be consideredyood.
To addressll theseissuesve adoptthe following four-stepapproach:

Step |. Specificatiorof generaklasse®f probleminstancegSection3.2).



Step I1. Preliminarytournamentdetweenarangeof stratgies,onthegeneralproblem
instanceclassesEvaluatewhich stratgyiesaremostrobuston eachproblemclass
by worst-casgerformancen average-casproblems(Section3.3).

Step 111. Staticestimationof the expectedvalueof a probleminstancefor eachplayer
(Section3.1), and sensitvity analysisof probleminstancesjo designbad-case
probleminstancegSection3.2).

Step 1V. Final tournamentdetweenthe mostrobust strateiesof the preliminarytour-
namentson a setof bad-caserobleminstancedrom eachof the mostdifficult
problemclassesEvaluationis onthe basisof expected average-casperformance
on bad-casgrobleminstancegSection3.3).

3.1 Expected Value of the Game

A stratgy will oftenwish to estimatethe valuev? (p) or vy (p) of a probleminstance,
usually undersomescenarioof how the immediatefuture will proceed. A dynamic
estimator of the valueof a probleminstances a procedurethat estimates (p) from
theresultsof atleastonesimulationbattle. A static estimator of thevalueof aproblem
instancds a procedurdhatestimates (p) without performingary simulationbattles.

Two-persongametheoryis dividedinto constant sum games, in which the sumof
the payofs is constantover every pair of playeractions,andgeneral sum games, in
which the sumof the payofs neednot be constanbver pairsof playeractions(Osborne
andRubinstein[8]). Competitionis perfect in a constantsumgamesinceary payof
which oneplayerdoesnot receve mustbe receved by the otherplayer However, in a
generabumgame competitionis not perfect. Generasumgamesarefurthersubdvided
into noncooper ative, in which arny type of collusion,suchascorrelatedstratgjiesand
sidepaymentsis forbidden,andcooper ative, in whichall suchcooperations permitted.
A noncooperatie gamefocuseson setsof possibleactionsof individual playerswhereas
a cooperatre game(or coalition game) focuseson the setsof possiblejoint actionsof
groupsof players.When\ = oo the CPCPis a constansumgamesincethereis always
time to claim one more prize. However, when\ < oo the CPCPis a honcooperatie
general-sungame,sinceit is possiblethatthe overall deadlineexpiresbeforeall prizes
areclaimed. In the latter case,the playersmay exhibit qualitiesof cooperationsince
both playerscould be betteroff by not enteringinto time consumingconflict.

Let va(p; A ~ a,B ~ b) denotethe total prize value claimedby player A in a
simulationbattleon probleminstancep in which player.A adoptsstrat@y a andplayerB
adoptsstratgy b. Let S, betheinfinite setof all possibleplayerstratgies. Thevalue
of the game g (or the value of problem instance p), v (), is definedasthe Nash
equilibriumvaluein mixed stratgies (seeOsborneand Rubinstein[8]) to player.A of
theinfinite two playergamein whichbothplayers’purestratgiesareS ., if suchaNash
equilibriumexists. Let S be a givenfinite setof playerstratgies. The computational
maximin value of the game p (or the computational maximin value of the problem
instance p), v$(p), for thegivens, is

v (p) = max {minUA(p;A ~a B~ b)}
aes | bes



Finally, vg(p; A ~ a,B ~ b), vi(p) andvg(p) aredefinedsimilarly for playerB.

3.2 Classes of Problem Instances

Theprize class (P-classfocuseson thelayoutandvalueof individual prizes,generated
by constructionpr dravn from someprobability distribution, or througha combination
of these.Thecluster class(C-classfocusenthelayoutandvalueof individualclusters
of prizes.Thedensity class (D-class)focuseson the compositionof prize valuedensity
features. Theseprobleminstanceclassescan be describedas average-caseproblems
sincethereis no prior reasorto expectary oneprobleminstanceo beany moredifficult
thanary othet

A problemis strategically difficult eitherwhen experimentatiorshows that payof
estimatedoy tacticalor stratgic analysisis not realised(predictability),or whensmall
variationsin the probleminstancegroducesignificantchangesn thetacticsrequiredto
realisethe expectedpayof (sensitvity). We expectthataneasyprobleminstancewould
correspondo onefor whichit is easyto estimatdts value,i.e. the betterstaticestimators
would give approximatelythe samevalue. Hence , oneway to definea difficult problem
instances asa probleminstancegor which thereis a high variability betweerestimators
of thevalueof thatprobleminstancej.e. a difficult probleminstances onethatis hard
to predictaccuratelyandhencehardto make goodstrateyic andtacticaldecisiondor.

To definea quantitatve measuref probleminstancedifficulty, choosetwo (staticor
dynamic)estimatorsy’ andv”. Definethedifficulty, (), of probleminstancep by

(Jva(p) —vialp)] + lvp(p) — vE(p)l)
2Q(p)

whereQ(p) is the maximumpossiblevaluein prizesthat the two playerscan jointly
collectif they completelycooperate.A probleminstanceyp is, therefore,bad-caseif
&(p) is significantlynonzero.

The constructionand improvementparadigmmay be appliedto finding bad-case
probleminstances.“Improving” the difficulty of an existing constructedoroblemin-
stanceinvolves perturbingthe initial playerlocations,prize locations,prize values,or
overalldeadline We proposehatbad-casg@robleminstancesanbefoundby searching
possibleinitial playerlocationsfor player.A and player B initial locationsthat maxi-
mize&(p), while fixing the prize locations prize values,andthe overall deadline. Local
searchis not appropriatesincethe discretenatureof £(p) may leadto a spatialplateau
of constantvalues,with respectto perturbationan one spatialvariable, which (non-
metaheuristic)ocal searchoftenfindsdifficult to searchsuccessfully

£(p) =

3.3 Effectivenessand Robustness of Strategies

We canevaluatev, (p; A ~ a, B ~ b) andvp(gp; A ~ &, B ~ b) by dynamicsimulation
battle. However, oneplayermaybeableto accumulatenorevaluethanthe othersimply
becausef theinequityof thestartinglocations.A solutionto thisproblemis to repeathe
simulationbattle with the initial playerlocationsreversedandlet the scorebe the sum
of the original andreversedbattle results. We expectthat stratgjies of approximately



equivalenteffectivenesswill claim approximatelythe sametotal in prizesfrom the two
simulationbattles.We alsoexpectthatif onestratgly dominatesanotherthenit will do
so,on average from bothorientationof theinitial playerlocations.

A further issueis the comparabilityof a resultingscoreon one probleminstance
with the scoreon another Benchmarkingthe scoreagainstthe expectedvalue of the
probleminstancevould beideal,but we mustsettlefor thecomputationaimaximinvalue
of the probleminstance.In addition, the total prize pool for eachprobleminstanceis
standardised.Hence, the resultingscores,s»4(p; A ~ a,B ~ b) for player A and
»p(p; A ~ a, B ~ b) for playerB, for the simulationbattlebetweerplayer.A adopting
stratgy a andplayerB adoptingstratgly b on probleminstancep, aredefinedby

sa(piA~a,Brb) = va(pA~a B~b) —vi(p) +
vp(p; A~ b, B~ a) - vg(p)
%B(paANa:BNb) = UB(paANaaBNb)_Ug(p) +
va(p; A~ b, B~ a) - vi(p)
Considerthemaximinscore »<° (p), over a probleminstancep:
x°(p) = maxminsy(p; A~ a,B~b)=maxminxp(p; A~ a,B~Db)
aes bes bes aes
= maxmin (va(p; A~ a B~b)+uvg(p;A~Db,B~a))
acs bes

— (vi(p) + vg(p)) -

Thatis, »° () is the differencebetweerthe maximinof the sumof the total prize value
from eachorientationof theinitial playerlocationsandthe sumofthemaximinof thetotal
prize valuefrom eachorientationseparately If anoptimal (Nashequilibrium) stratey
wereincludedin S thens®(p) = 0. Thisimpliesthat s, andsp arenotbiasedon ary
classof probleminstances.

It remainsto definethe robustnessand effectivenesf anindividual stratgy. This
canonly beevaluatedor to asetof opposingstratgies,S, andasetof probleminstances,
P. However, the evaluationis differentfor the preliminary andfinal tournaments.For
the preliminarytournamentswe wish to evaluatethe robustnesof a stratayy, i.e. deter
minetheworst-caseesultagainstinaverage-cassetof probleminstancesndopponent
stratgies. Hence we definetherobustnes®f stratgy a asthe‘MIN-MIN’ evaluation

#4(P; A~ a,B~S)=minmins4(p; A~ a,B~b).

bes pep

For the final tournamentsye wish to evaluatethe expectedperformanceof a stratey,
i.e. determinethe average-caseesult againsta bad-caseset of probleminstancesand
opponentstratgies. Hence,we definethe effectivenessof stratgly a asthe ‘MEAN-
MEAN’ evaluation

%A(P;A a,B~ S Z Z%A p, a,BNb).

pGIF’



4 Conclusions

This paperhasoutlinedtwo importantcontributionsto the studyof the CPCP Thestrate-
gic planningarchitecturegivessomegeneralstructureto the decisionproblemfacedby
aplayerin designinga stratgy. Contingentanalysisof multiple scenarioss usedin the
planningphase,and forecastingand obsenation are usedin the selectionphase. The
experimentabesignof the computationatournament— asa meanf evaluatingthe ef-
fectivenessf stratgjiesandthe difficulty of probleminstances— alsoraiseda number
of difficultiesin termsof benchmarkingagainstsetsof opposingstratgjiesandclasses
of probleminstancesfairnessof the initial playerlocations,andthe comparabilityof
a numericalscoreacrossprobleminstances.Although no specificstrategieswere de-
fined, nor any tournamentesultspresentedthesedesignissuesllustratethe significant
differencebetweerthe CPCPandstandardsehicleroutingandschedulingproblems.
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