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Abstract
Many real world problems involve making repeated decisions over time in an uncertain
environment.  These decisions often involve a trade-off between some immediate
benefit(s) and possible future benefit(s), and also take in to account the impact the
decision will have on future decisions and benefits.  Stochastic dynamic programming
(SDP) is often used to analyse problems of this type and the objective is often to
maximise the expected value of benefits, which can imply that the decision-maker is ‘risk
neutral’.  But is this appropriate?  In this paper a SDP formulation is described which
accommodates risk attitudes via a utility function.  The approach is discussed and
illustrated for stochastic reservoir management and stochastic route choice problems.

1 Introduction
There are numerous OR problems which involve making decisions over time in an
uncertain environment.  These problems can quickly become complex depending on
aspects such as the number and form of objectives, the way in which uncertainty is
represented, and the relationships between variables.  An important characteristic of
many of these problems is that uncertainty is resolved during the planning process and
the decision maker has the ability to make decisions which are conditional on the past
history of outcomes.  A suitable solution technique for these problems will therefore
produce a dynamic solution rather than a static solution, where the latter does not allow
for any adjustment through the planning horizon.

The general problem of interest is as follows.  The planning horizon consists of
t=1… T finite stages.  The finite state of the system is denoted by ts , and is constrained
in each period by tt Ss ∈ .  The decision at each stage is denoted by tq , and is
constrained by tt Qq ∈ .  For simplicity, we assume that the state of the system is
represented by a single state variable, and that a single decision is made in each stage.
Uncertainty during each stage is reflected by ta , where the probabilities of event ta  are
modelled as independent distribution or as a Markov process.  The state of the system in
t+1 is described by the function, ( )tttt asqg ,,  and the return in each period is

( )tttt asqr ,, ; both functions may not be dependent on all these variables.  The problem
to be solved can be stated as follows.
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If we assume that the DM has a linear utility function, then the expected sum of the
returns is equal to the sum of the expected returns [4].  A stochastic dynamic
programming formulation can now be described for this problem
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where ( )ttt asf ,  is the maximum expected total return from t to T given that the state of
the system is ( )tt as ,  in period t.  Note that if 1+ta  is independent of ta , ta  does not
need to be included as a description of the state of the system.  Discounting is ignored
here but it could be incorporated easily.

But, what if the DM is not risk neutral (which is the implicit assumption behind
taking expected values)? There are relatively few studies which consider utility
maximisation in a multi-stage setting.  Krautkraemer, van Kooten, and Young [12]
describe one of the first applications of SDP which incorporates ‘risk’.  The approach is
discussed in the context of agricultural planning.  A utility function is defined for the
return in each period, and the total utility is the sum of the individual utilities i.e.,
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This approach accommodates preferences towards intra-period outcomes, but does not
explicitly model attitudes towards outcomes over the entire planning horizon.  This
objective is additively separable, so a recursive relation as in P2 can be used.

Ranatunga [14] describes an SDP approach which handles preferences of the form
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This objective is non-separable because utility depends on the returns achieved in all
periods, and cannot be calculated by adding the expected utility of each individual
benefit.  Therefore, the objective is non-separable, invalidating the use of the recursive
relation as defined in P2, and hence dynamic programming.  In order to overcome the
problem of non-separability, another state variable, tw , is defined as the accumulated

returns (or ‘wealth’) up to the beginning of period t, ∑
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can state that ( )tttttt asrwhw ,,,1 =+ .  The utility function can therefore be defined over



the range of 1+Tw  which is not dependent on all the decisions made over the planning
horizon, but only on the decision(s) and state of the system in T; Tw  is dependent on the
decisions/state in T-1, and so on.  Kall and Wallace [6] applied essentially the same
technique to a 3-stage investment problem with a continuous wealth state variable.  The
non-linear utility function, defined over terminal wealth outcomes, is passed back to each
stage in its function form.  However, the conditions for doing so are dependent on the
assumption about initial wealth and require non-negative returns.  The technique would
also become intractable for large problems and when utility is multidimensional.  The
concept of using the past history as a state variable has been mentioned in [10,11],
though they do not (re-)state the problem in the way described above.

The SDP formulation to solve Problem P1 with the objective described in Equation
(8) is therefore
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The terminal value function is the utility associated with the state of the system at
the end of the last period: ( ) ( )11111 ,, +++++ = TTTTt swUswf .  Formulation P2 is referred to
as UMSDP: Utility Maximising Stochastic Dynamic Programming.

Ranatunga applied UMSDP to the purchase and sale of forward contracts so a risk
averse DM owning thermal plant with significant intertemporal risks could hedge against
price uncertainty.  He only considered unidimensional utility functions which were a
function of 1+Tw .  Kerr, Read, and Kaye [9] applied UMSDP to medium-term reservoir
planning with inflow uncertainty.  They used bidimensional utility functions which were a
function of both 1+Tw  and 1+Ts  (storage).  Reservoir planning is no different than any
other SDP application area in that an objective of maximising an expected value is the
norm, even though inflow uncertainty is frequently acknowledged as a ‘risk’.

Kerr [8] recognised that UMSDP could be applied to problems which involve
finding a path through a directed stochastic acyclic network.  Problems with this
structure are often referred to as stochastic route choice (SRC) problems.  The objective
of SRC problems is to maximise a function of the outcomes associated with each arc in a
path.  Not surprisingly, there are a relatively small number of studies which address the
case where the DM has some non-linear preference or attitude towards the distribution
of terminal outcomes.  Even fewer produce a dynamic solution which is conditional on
the outcomes of uncertain events.

The remainder of this paper includes a discussion and illustration of the application
of UMSDP to a medium-term reservoir management problem (Section 2) and to a SRC
problem (Section 3).  A summary is presented in Section 4.



2 A reservoir planning problem
Reservoir management is concerned with the planning of reservoir releases, and the
resulting hydro generation.  It is an interesting and complex problem because water is
storable commodity, so there is a continuous process of deciding whether to release it
now, or to store it and release it at a later date, where the time frame for these decisions
can range from minutes to months.  In New Zealand, for example, approximately 70% of
the annual national energy demand is supplied from hydro sources.  Detailed planning of
reservoir operation is crucial because of uncertainty about the level of natural inflows,
the fact that the aggregate storage capacity is only 6 weeks (approximately) of national
demand, and because thermal generation is relatively expensive.

SDP often applied to reservoir management problems; the scheduling horizon divides
naturally into discrete time periods (the stages of the SDP).  Storage is the state variable
which links the stages [15].  Reservoir planning models typically minimise expected
costs, or maximise expected profits, implying that the firm or DM is risk neutral.  This
may or may not always be a valid assumption, depending on the environment in which
the reservoir is operated and any other tools which have been used to hedge against risk.
Bergara and Spiller [2] describe a static economic model of New Zealand’s electricity
market where energy suppliers (and retailers) are all described as being risk averse,
noting the significant uncertainty caused by inflow uncertainty.  The now extinct
Electricity Corporation of New Zealand (ECNZ) developed a planning model which
incorporated this approach in a dual dynamic programming framework [3].  Aside from
research motivations, there appears to be support from both theoretical and practical
standpoints for considering non-‘risk neutral’ attitudes in the context of energy planning.

UMSDP is applied here in the context of a firm (the ‘player’ or DM) which operates
a single reservoir in an energy market which consists of a number of other firms
(‘competitors’) supplying energy.  The player controls the quantity of reservoir release,
and UMSDP is used to plan these releases for the coming year (52 weeks) given the
uncertain inflows and DM’s attitude to the state of the system at the end-of-horizon .
Inflows are represented by independent distributions.  The player is contracted for some
amount of generation in each week, where the contract type is a call for differences.  The
contract quantity and price is known a priori, and contract revenue is received in the
period that the energy is supplied.  Demand must be met in each period from reservoir
release and generation from the competitors.  The competitors are assumed to behave as
‘perfect competitors’ in the sense that the player has perfect knowledge of the capacities
and marginal costs of these firms when making the release decision in each period, and
they will generate any feasible amount required to satisfy demand.

The objective is to maximise the DM’s expected utility of end-of-horizon net wealth
and end-of horizon storage.  The end-of-horizon value function, 1+Tf , is therefore
described by calculating the utility of arriving at different points (accumulated wealth and
storage levels) in the end-of-horizon state space.  The form of utility we use here is
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The UMSDP formulation is as follows
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The utility for a particular end-of-horizon wealth and storage is calculated in (14),
where Wu  and Su  are concave non-decreasing utility functions which reflect risk

aversion [7].  The additive form of ( )•U  described here implies that 1+Tw  and 1+Ts  are
utility independent [7].  That is, the utility associated with a particular level of 1+Ts  is
independent of the level of 1+Tw , and vice versa with respect to wealth.  In reality, the
utility of storage and wealth would probably be utility dependent, though the form used
here serves as a useful starting point.  In each week, we choose the release level ( qt )
that maximises the expected end of horizon utility (15) given the distribution of inflows
( ta ) in the period.  Equations (16) and (17) describe the state transitions for wealth and

storage.  Note that the calculation of ( )ttt sqr ,  considers deterministic exogenous
variables such as demand, competitor supply curves, and the contract quantity/price.
Inflows are assumed to occur at the end of the period so tt sq > , which is a conservative
representation of reality.  Storage and release bounds are defined in (18) and (19), and
the initial level of accumulated wealth is 0 (20).  The approach described here for solving
RM1 is discrete dynamic programming.  See [9] for more detail.

The base case for these experiments is where the player is risk neutral in wealth and
storage.  Experiments were also performed using the utility functions illustrated in Table
1.  The form of the utility functions used here implies a trade-off between storage and
wealth, as opposed to only being risk averse towards wealth, so the impact of these
functions of both components is important.
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Table 1: Combinations of WU  and SU

The output from the optimisation is an optimal weekly release surface which describes
the optimal release should a wealth/storage pair be arrived at in that week.  For concave

Wu  and Su , release is non-decreasing in both storage and wealth.  For the risk neutral



case, the release will change in the storage dimension but will be constant for all any
value of wealth.

Simulations were performed for 20 representative years of inflow data. Table 2
shows the CDFs for end-of-horizon wealth (a) and storage (b).  The impact of increasing
risk aversion on the wealth CDFs is that they compress and become more upright.
Minimum wealth increases, maximum wealth decreases, and mean wealth increases
($4m) using W4S2 and decreases ($42m) for W4S0.  The standard deviations of wealth
are consistent with the shapes of the CDFs, being $45m for the RN case, $28m for
W4S2, and $8m for W4S0.  For W4S0, the effect of achieving such low variability in
expected wealth (albeit with a lower mean) is to hold more water in storage, though the
standard deviation of expected end-of-horizon storage is also slightly higher than the RN
case (376GWh compared to 348GWh for RN).  The risk averse storage CDFs are not
too dissimilar from the RN CDF.
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Table 2 End-of-horizon CDFs

Compared to risk neutral results, risk aversion had the expected impact on wealth,
reducing the variation of end-of-horizon wealth outcomes, in some cases quite
dramatically.  This was at the expense of increasing the variability of end-of-horizon
storage levels, though the increase was small compared to the impact on wealth.  The
change in mean wealth and storage was influenced by the nature of the trade-off between
storage and wealth in the utility function.  Overall, using a risk averse utility curve
produces release schedules which substantially reduce the variability in end-of-horizon
wealth outcomes while not greatly affecting end-of-horizon storage.

3 A stochastic route choice problem
Many planning problems can be represented as discrete, directed, acyclic networks.  The
generic problem statement is: given an origin node, destination node, and a number of
intermediary nodes all linked by arcs with uncertain lengths, determine a path from the
origin to the destination that maximises some objective.  These problems are often
referred to as stochastic route choice (SRC) problems.  Note that the length of an arc
typically reflects a cost or distance or travel time and that nodes can be linked to more
than one other node.  (For the remainder of this discussion, arc lengths reflect travel
time).

Let NT  be the time taken to reach the destination node, N.  If the objective is to
minimise the expected travel time, min [ ]NTE , the optimal path can be found using a
variety of methods such as dynamic programming, complete enumeration, and integer



programming.  A SDP approach involves defining ( )if  as is the minimum, and optimal,
expected travel time (or length or cost) from node i to N.  The minimum expected travel
time, ( )1f , can be found by solving:

SRC1 ( )
( ) ( )
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+=
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 E min

,,
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where i=1… N is a finite set of nodes; k=1… K is a finite set of directed arcs linking a pair
of nodes (i,j) where i<j; ( )iJ  is the set of nodes succeeding i; and ( )jiK ,  is the set of
nodes linking node i to j.  The objective of minimising the expected travel time implicitly
assumes that the DM is risk neutral with respect to the total travel time.  That is, the
marginal value of a decrease in the total travel time is constant.

Consider now the situation where ( )NTU  reflects the DM’s preferences towards the
total time taken to reach the destination node, NT .  When the objective is defined this
way, the optimal path must be determined by considering the expected utility of this total
time.  The objective is therefore no longer separable, and the problem can not be
formulated using SDP formulation SRC1.  Several authors have stated that to determine
an optimal solution to this problem requires complete enumeration of all possible routes
[1,13].  Algorithms have been developed to reduce the size of the network (e.g. [5,13])
or to derive a solution using simulation [1].

While the performance of some of these approaches is impressive, the major
drawback is that the solutions are static in an environment where the uncertainty is
dynamic.  Static solutions to SRC problems are determined prior to any realisation of
uncertainty, while dynamic solutions allow the DM to adjust the path once some
uncertainty has been realised.  Static solutions are certainly appropriate in many
situations (e.g. route choice for hazardous materials), though there are many contexts in
which a dynamic solution appears to be a more consistent with the decision making
environment.  However, there are few approaches for finding solutions to these problems
because the problem is “notoriously intractable” [13].

We observe that the UMSDP technique can be applied to this problem in order to
overcome the problem of the objective being a non-separable function of the arc lengths.
Simply define another state variable, iT , which is the accumulated travel time upon
reaching node i (and departing from it).  Because we are assuming the network is
directed and acyclic, the node precedence relationships are known, so the time taken to
reach node i is simply the sum of the arc lengths from the origin to i.  The terminal value
function is ( ) ( )NN TUTNf =,  and the problem can be formulated as a stochastic dynamic
program:
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01 =T (24)

Starting from stage N-1 and working backwards, ( )iTif ,  is evaluated for each arc and
the optimal decision from each stage stored.  The accumulated time variable is a



continuous variable which is discretised and evaluated at discrete values at each stage.
The bounds on iT  can be calculated by working through the network, starting from the
origin.  Obviously the range of iT  will expand for stages further away from the origin,
with the destination node having the largest range of iT  values when arc lengths are non-
negative.

3.1 Example SRC problem

We now consider a small SRC problem which involves finding a utility maximising route
through the network illustrated Figure 1a.  The arc length distributions were normally
distributed as follows: arcs 1, 4, and 6 were ( )2,11~N ; arcs 2 and 5 were ( )1,21~N ;
arc 3 was ( )10,30~N , and arc 7 was ( )1,12~N .
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Figure 1: SRC example

Three utility functions were defined over the range of completion times (Figure 1b).  The
base case is when the DM is risk neutral (RN), which corresponds to the negatively
sloped dashed line.  The other two utility functions reflect the case where there is a limit
on the completion time, and this is reflected by a ‘decreasing deadline’ utility function of
the form
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If NT >d, the entire process considered to be worthless and this is reflected by utility
being zero, regardless of the level of NT .  The ‘RNDD’ and ‘RADD’ utility curves
reflect risk neutral and risk averse preferences towards NT  when NT <d, where d=36.

Discrete dynamic programming is again used to solve SRC2 using the data and utility
functions described above.  The solutions are summarised in Table 3.  The RN solution
(arc 3) takes no account of the variability of the arc times, preferring the (combination
of) arcs with the lowest mean travel time.  The RNDD solution involves using arc 2 to
reach node 3, then either arc 6 or 7, depending on the time of arrival at node 3 i.e., the
length of arc 2.  The RADD solution takes a more conservative decision at node 1,
moving to node 2 via arc 1.  If the realisation of 1t  is less than 15.4, arc 5 is selected to
move to the destination node.  Arc 1 is ( )2,11~N , so the path 1-4 is most likely to
occur.  However, if 1t >15.4, arc 4 is selected to reach node 3, at which time another set
of conditional arc selections is described.  The main difference between the RADD and



RNDD policies is that risk aversion results in a more strategy which is more sensitive to
the distributions of the arc lengths.

Node 1 Node 2 Node 3
RN Arc 3 - -
RNDD Arc 2 - Arc 6: 193 <T

4.2221 3 << T
8.223 >T

Arc 7: 2119 3 << T
8.224.22 3 << T

RADD Arc 1 Arc 5: 4.152 <T
Arc 4: 4.152 >T

Arc 6: 9.183 <T
4.222.21 3 << T

8.223 >T
Arc 7: 2.219.18 3 << T

8.224.22 3 << T
Table 3: SRC solution

Consider the decision process at node 3 for the RNDD and RADD cases.  For low
(good) 3T  where there is no chance of 4T >d, the means and variances of arcs 6 and 7 are
such that arc 6 has a higher expected utility than arc 7.  Let kµ  denote the mean length
of arc k.  Because the means and variances of arcs 6 and 7 are similar, for 3T  near d- kµ ,
there are ranges of 3T  for which each arc is preferred.  However, arc 6 has a lower mean
and higher variance, so for large values of 3T  there will be a higher probability that

4T <d, and hence an expected utility greater than that for arc 7.  Arc 6 is therefore
preferred for both RADD and RNDD when 3T  is large.

4 Summary
This paper has described an SDP approach for solving multi-stage problems where a
utility function reflects preferences towards end-of-horizon outcomes.  An objective of
this form is non-separable because the utility associated with a particular end-of-horizon
outcome is dependent on all the decisions and realisations of uncertainty over the
planning horizon.  Treating accumulated returns, tw , as a state variable means that a
terminal value function defined over 1+Tw  is separable.  The technique was originally
defined for a sequential decision process where 1+tw  is only dependent on tw  and tr
[14].  The technique can also be applied to decision problems where 1+tw  is a function of

tw  for any t<t+1 i.e., a directed acyclic network [8].
The technique was illustrated for a reservoir management problem and a route choice

problem.  For the reservoir management problem, utility maximisation produced weekly
release decisions consistent with the preferences toward the distributions of end-of-
horizon storage and wealth.  These results were borne out by simulation results.  For the
route choice problem, utility was a function of total travel time, and the optimal arc
selections reflected the cumulative effect of arc variability on expected utility.  In both
cases, the state variable is unbounded.  In addition to the appropriateness and form of



utility function(s), the accuracy of the discretisation and overall tractability of the
technique are areas for future research.

References

[1] J. F. Bard & J. E. Bennett, Arc Reduction and Path Preference in Stochastic Acylic
Networks. Management Science 37(2), 198-215, 1991.

[2] M. E. Bergara & P. T. Spiller, Competition and Direct Access in New Zealand’s
Electricity Market. In Deregulation of electric utilities, Zaccour, G. Ed., Kluwer,
Boston, 1998.

[3] M. Craddock, A. D. Shaw, & B. Graydon, Risk-Averse Reservoir Management in
a Deregulated Electricity Market. In Proceedings of the 33rd ORSNZ Conference,
Auckland, New Zealand, 157-166, 1998.

[4] E. V. Denardo, Dynamic Programming: Models and Applications, Prentice-Hall,
New Jersey. 1982.

[5] A. Eiger, P. B. Mirchandani, & H. Soroush, Path Preferences and Optimal Paths in
Probabilistic Networks. Transportation Science 19(1), 75-84, 1985.

[6] P. Kall & S. W. Wallace, Stochastic Programming, John Wiley and Sons, New
York, 1994.

[7] R. L. Keeny & H. Raiffa, Decisions with Multiple Objectives: Preferences and
Value Tradeoffs, John Wiley and Sons, New York, 1976.

[8] A. L. Kerr, Utility Maximising Dynamic Route Selection in Acyclic Stochastic
Networks. In Proceedings of the First Western Pacific and Third Australia-Japan
Workshop on Stochastic Models, Christchurch (New Zealand), 269-277, 1999.

[9] A. L. Kerr, E. G. Read, & R. J. Kaye, Stochastic dynamic programming applied to
medium-term reservoir management: Maximising the utility of a system supply
cost minimiser. EMRG Working Paper EMRG-WP-97-03, Department of
Management, University of Canterbury, New Zealand, 1997.

[10] J. O. S Kennedy, J. B. Hardker & J. Quiggin, Incorporating Risk Aversion into
Dynamic Programming Models: Comment, American Journal of Agricultural
Economics, 76, 960-964, 1994.

[11] D. M. Kreps, Decision Problems with Expected Utility Criteria, I: Upper and
Lower Convergent Utility, Mathematics of Operations Research, 2(1), 45-53,
1977.

[12] J. A. Krautkraemer, G. C. van Kooten & D. L. Young, Incorporating Risk
Aversion into Dynamic Programming Models, American Journal of Agricultural
Economics, 74, 870-878, 1992.

[13] I. Murthy & S. Sarkar, Exact Algorithms for the Stochastic Shortest Path Problem
with a Decreasing Deadline Utility Function. European Journal of Operational
Research 103(1), 209-229, 1997.

[14] R. A. S. Ranatunga, Risk averse operation of an electricity plant in an electricity
market. ME dissertation, School of Electrical Engineering, University of New
South Wales, 1995.

[15] W. W-G  Yeh, Reservoir management and operations models: A state-of-the-art
review, Water Resources Research, 21(12), 1797-1818, 1985.


