
The Marriage of Dynamic Programming
and Integer Programming

John F. Raffensperger, Ph.D.

Department of Management, Private Bag 4800

University of Canterbury, Christchurch, New Zealand

j.raffensperger@mang.canterbury.ac.nz

Abstract

Dynamic programming (DP) has long been used to solve optimisation problems.
Though sometimes suffering from the curse of dimensionality, DP has a dowry of
integrality. Integer programming (IP) often suffers interminable branch and bound, but
brings the gift of flexibility. DP tends to be hard to program, but IP allows us to easily
write models that are hard to solve. Until recently, DP and IP have only courted in
specialised algorithms, usually column generation, where the IP (or a linear program)
was a master and the DP was a subproblem.

Recently, R. Kipp Martin showed how DP and IP can be married, using his
technique of variable redefinition. A dynamic program can often be written as a network
linear program (LP). When viewed this way, we can use the underlying DP network
structure to reformulate difficult IPs into new models that have better bounds and solve
more quickly. The marriage of DP and IP allows the strengths of both types of
algorithms to be combined. There are applications wherever DPs are used, allowing the
DP modeler to solve more interesting problems than with DP alone. Though I'll leave
out many technical details, this paper is a practical tutorial in Martin's variable
redefinition. I'll discuss lot sizing, cutting stock, scheduling, and vehicle routing.

1 Introduction

Suppose we want to solveIP: min cx, Ax≥ b, x≥ 0, x integral. A common first step is to
solveLP: min cx, Ax≥ b, x ≥ 0. Now it is well known that the optimal values have the
following relationship: v(LP) ≤ v(IP). The tightness ofIP is defined as |v(LP) –
v(IP)|/v(LP). This is also known as theduality gap. If this is small, we probably have a
good formulation. If this is large, branch and bound is likely to take a long time.

To handle a duality gap, we can try to solve our way through it, to prove optimality.
This can be bad with a large gap, where branch and bound is likely to take a long time.
So we can quit without proving optimality, say, at 1%. Unfortunately, managers don’t
like this. If the current value is, say, $20 million with a gap of 1%, a manager may
reasonably insist that the analyst continue the solution process further.

Another option is to find a new formulation ofIP so LP has a better bound. For
example, consider two well known formulations of the simple facility location problem:

L1: min�i fi yi + �i �j cij xij, L2: min�i fi yi + �i �j cij xij,
�j xij = 1, for all i, �j xij = 1, for all i,
�i xij = n·yj for all i, xij ≤ yi for all i, j , for all i,
xij, yj ∈{0,1} for all i, j . xij, yj ∈{0,1} for all i, j .

Both formulations haveI2 + I variables. However,L1 has 2·I rows, where asL2 has
I2 + I rows. For 50 locations,L1 has 2,550 variables and 100 rows.L2 has 2,550
variables, but 2,550 rows. Is this smart? Yes! Whenxij is set to 1,L1 setsyj to a fraction,
on the order of 1/n, charges a fractional fixed cost, and thus tends to have a large duality
gap. But whenL2 setsyj to 1, it charges all the fixed cost, and has a very tight bound in
the LP relaxation. In fact,L2 is often naturally integer. So we see from this old example
that, in general, more constraints help an IP.

Some solvers can improve constraint coefficients and variable bounds automatically
(e.g. LINDO’s TITAN command, [9]). These automatic improvements are often
sufficient to make the difference between a reasonable and unreasonable solution time.

However, sometimes it pays to reformulate theentiremodel. Martin [6] and Martin,
Rardin and Campbell [7] showed how to reformulate IPs based on a polyhedral
characterisation of a DP hypergraph. The new formulations aremuch tighter than the
old. Their theory imposes the most mild restriction on the underlying hypergraph: the
decision hypergraph must be directed and acyclic. Interestingly, the DP characterisation
is therefore totally dual integral (not totally unimodular), but this is sufficient to
dramatically improve the tightness of the formulation.

We show next four examples of variable redefinition. The first, the capacitated lot
sizing problem, is due to Eppen and Martin [2]. The second, the cutting stock problem,
is due to Dyckhoff [1]. The third example, the tank scheduling problem, is due to
Raffensperger [8]. The last, which the reader may find amusing, is original here. It is a
formulation for the travelling salesman problem that is solvable in strongly polynomial
time in the number of variables. We leave the bad news for the end.

2 The lot sizing problem: old and new
The well-known capacitated lot sizing problem is usually formulated as follows:
Parameters:
T, P= number of months, products.
kt = capacity available in montht.
dpt = demand for productp in montht.
spt = set-up cost of productp in montht.
cpt = variable cost of productp, montht.
hpt = holding cost of productp, montht.

Decision variables:
ypt = 1 if the machine is set up for productp
in montht, else 0.
xpt = production of productp in montht.
Ipt = inventory of productp in montht.

LS1: minimise�P
p=1�

Τ
t=1(cptxpt + hptIpt + sptypt) subject to:

�
P

p=1xpt ≤ kt, t = 1,…,T,
Ip,t–1 + xpt – Ipt = dpt, p = 1, …,P, t = 1,…,T,
xpt ≤ Mpt ypt, p = 1, …,P, t = 1,…,T,
xpt, Ipt ≥ 0, ypt ∈{0,1}, p = 1, …,P, t = 1,…,T.

Unfortunately, this formulation is big, loose, and difficult to solve. In practice,
people have used Dantzig-Wolfe decomposition, often called column generation. The
reason is because there is a convenient subproblem – the uncapacitated lot sizing
problem, which can be easily solved. The master model at iterationL is given by:

M: minimise�k
l=1�

P
p=1�

T
t=1θlp (cptxlpt + hptIlpt + sptylpt),

�
k
l=1�

P
p=1θlp xlpt ≤ kt, t = 1,…,T, (dual priceλt)

�
k
l=1 θlp = 1, p = 1, …,P, (dual priceπp)

θlp ≥ 0, l = 1,…,L, p = 1,…,P.
Notexlpt, Ilpt, andylpt are constant inM. A columnθlp corresponds to a schedule for

one productp at iterationl. For each productp =1,…,P, the subproblem is given by:
Sp: minimise�Τ

t=1(cptxpt + hptIpt + sptypt) + �
Τ

t=1λtxpt, + πp

Ip,t–1 + xpt – Ipt = dpt, t = 1,…,T,
xpt ≤ Mpt ypt, t = 1,…,T,

xpt, Ipt ≥ 0, ypt ∈{0,1}, t = 1,…,T.
This subproblem can be solved with IP or with the Wagner-Whitin DP algorithm.

(Why not solve the LP relaxation? Because we end up with a worse bound in the
resulting master program, and fractional solutions too.) This is the typical way DP is
used with IP – as part of a column generation algorithm.

Eppen and Martin [2] showed how to reformulateLS1 into a much tighter model.
They did this using the LP dual of the Wagner-Whitin DP. Let’s see how.

1 2 3 4 5

The Wagner-Whitin DP can be written as a shortest path network, as in Figure 1. If
we observe that this shortest path network can be rewritten as an LP, with the arcs as
variables and the nodes as constraints, we can produce a new formulation for the lot
sizing problem. We have a cost parameter:cijp = �

j–1
t=i ht(�

j
u=t+1 du) + ci(�

j
u=i du). The

decision variables and model are:
zijp = fraction of demand produced in periodi for demand in periodsi to j.
vip = 1 if we produce productp in periodi, else 0.

LS2: minimise�P
p=1�

T
t=1(�

T
t=1cijpzijp + stpvtp)

Capacity: �
P

p=1�
T

t=i (�t
l=i dl)zitp ≤ ki for i=1,…,T.

Produce each product:�T
j= 1 z1,j,p = 1 for p = 1,…,P.

If production ends in periodi, it must begin in periodi+1:
�

i–1
t=1 zt,i–1,p – �

T
j= 1 zijp = 0 for i =1,…,T, p=1,…,P.

Set up forcing: �
T

j=i zi,j,p ≤ vt,p for i=1,…,T, p=1,…,P.
Non-negativity and integrality:zi,j,p ≥ 0, vt,p ∈{0,1}.

This formulation is tighter than the original and will solve faster. The LP relaxation
of LS2 has an optimal objective value equal to the that ofM, when we solve the
subproblemS with DP or as an integer program. Variable redefinition produced a tight
model that could be solved directly with IP. No column generation was needed. Let’s
see how this works with some more examples.

3 The cutting stock problem

3.1 Old and new

The venerable cutting stock problem made its debut with Gilmore and Gomory [3], who
solved it with column generation. The subproblem is a one-constraint integer knapsack
problem, which can be solved conveniently with a DP. The master that Gilmore and
Gomory used is as follows. Variablexj is the number to make of one pattern, as shown
in Figure 2. Parameteraij is the number of pieces of lengthi in patternj.

MasterCS1: minimise�j xj,
�j aijxj ≥ di for each demandi,
xj integer.

SubproblemS: minimise�i πiai

�i l iai ≤ L,
ai integer.

Figure 1 Network diagram for lot sizing dynamic program.

pattern 1, x1: 10’ 10’, a10,1 = 2 5’, a5,1 = 1

pattern 2, x2: 12’, a12,2 = 1 8’, a8,2 = 1 5’, a5,2 = 1

pattern 3, x3: 15’, a15,3 = 1 6’, a6,3 = 1 waste

pattern 4, x4: 8’ 8’ 8’, a8,4 = 3 waste

Figure 2 A variable corresponds to a pattern.

It would be nice to have a formulation that avoided column generation. To do so, we
need to put all the information about patterns in the model. How can we get all patterns
in the model? The trick is to think about the DP. As we did with the Wagner-Whitin DP,
let’s examine this DP’s network. There is an arc (t,u) for each constraint coefficientl i =
t – u. The cost of arc (t,u) is the objective coefficient of variableai. As with the Wagner-
Whitin DP, this is just a shortest path problem, and we could write a network LP for it.
As shown in Figure 3, a variable corresponds to a cut.

Figure 3 A variable in CS2 corresponds to a cut.

ÿþýüûúüùø

ÿþýü�úü�ø

ÿþýü�úü�ø

ÿþýü�úüùø

ÿþýü�úü�ø

ÿþýü�úü�ø

ÿþýü�úü�ø

ÿþýü�úüùø

ÿþýü�úü�ø

ÿþýü�úüùø

ÿþýü�úü�ø

ÿþýü�úü�ø

ÿþýü�úüùø

Note that many redundant arcs can be removed in a wise implementation of the DP.
For example, note that Figure 4 contains the two paths, {0,5},{5,25}, and
{0,20},{20,25}. However, only one of these is needed. So a smart DP will eliminate
needless states and arcs. This cleverness extends to our reformulation of the integer
program. Just as we eliminate needless arcs in the DP, we can eliminate needless arcs in
the network formulation.

� � û� û� �� ��

û� û� ��

ù û� ûù �� sink

û� û� ��

� ûû û� �û

Figure 4 The complete network for a knapsack DP

What is the network formulation for the DP? It is a binary shortest path problem.
But this binary formulation suggests a reformulation of the original problem. We need a
general integer formulation, and now we can easily write it.

Parameters areL = the length of the uncut bar,di = the demand for lengthi and l i =
the lengths demanded,i = 1, …, K. Variables areyi,j = the number of pieces of lengthj –
i, cut ati inches from the end, andwi,L = the number of pieces waste, lengthL–i, cut ati
inches from the end.

CS2: minimise�j wj,L

�h yh,i – �j yi,j = 0, for all i ≤ L – lK,
�h yh,i – �j yi,j – wi,L = 0, all L – lK < i ≤ L,
�k yi,j ≥ dk, for each productk,
yi,j integer.

CS2 is due to Dyckhoff [1], but the theory came later from Martin [6].
WhenCS1 andCS2 are solved as LPs, and if the knapsack subproblemS is solved as

LP, we havev(CS1) ≤ v(CS2). When CS1 and CS2 are solved as LPs, and if the
knapsack subproblem is solved as an integer program or with a DP, thenv(CS1) =
v(CS2). However, after we solveCS1 to optimality as an LP (which we must for column
generation to work), even if the subproblemS is an integer program, we havev(CS1) ≥
v(CS2). The reason:CS1 is missing columns, butCS2 contains all possible patterns.

We get a better objective value, but also the solution time ismuchbetter withCS2.
Why? With CS1, we must solve the subproblem many times, possibly hundreds of
times, just to solve the LP relaxation. With care, we can avoid doing too much work in
the master at each iteration. But withCS2, we solve the DP exactly once, to generate the
LP formulation. Then we solve the LP once, and we have a very good solution. If we
wish, we can go into branch and bound immediately. In short, if the underlying network
structure is not too big,CS2 is simply the better formulation. However, there is another
reason to useCS2. We can use it to solvenewproblems that would be hard withCS1.

3.2 The Best Stocklength Problem

Our cutting stock firm, named Manuka Metals to motivate it, currently buys only 25’
lengths, which are then cut into the demanded lengths. Suppose Manuka Metals could
ask the supplier forSspecial lengths, for extra cost. That is, we can pay extra to buy 17’
lengths, or 5.5’ lengths, or whatever we wish, which we would then cut into the lengths
demanded. Manuka Metals doesn’t want to buy many special stocklengths, probably
just one or two, to keep inventory down. Which special lengths should they order?

AssumeL (= 25’ here) is the biggest possible length. Assuming only integral
demand lengths, we could solve this by doing Gilmore-Gomory column generationL
times. Let’s not. Instead, we can modifyCS2 to solve this. Recall from the above that
wi,L = pieces waste of lengthL – i, startingi inches from the end. We can now have any
stock length. We must add more of these variables:wi,j = pieces waste of lengthj – i,
startingi inches from the end of a length that isj inches long, wherei ≤ j < i + l k, so
waste≤ smallest product.

Arc wi,j may end at any possible stock length, not just the maximum. So arcwi,i is
the number of patterns cut to length ofi, with no waste. We add one of these variables
for each node in the DP network. We also need a binary variable to decide whether we
choose a particular special stocklength:zj=1 if we choose stock lengthLj , else 0.

BSL: minimise�K
k=1�t�j: t < j <t +lk (j – t)wt,j

�h yh,i – �j yi,j – �j: t < j <t +lk = 0, all L – lK < i ≤ L,
�k yi,j ≥ dk, for each productk,= 1,…,K.
�t wt,j ≤ Mzj, for all j.
�j zj ≤ S,

yi,j integer,zj binary.
Once solved with branch and bound, this formulation will give the true optimum,

which would be very difficult with column generation. Another model we can now
solve easily: the dynamic cutting stock problem. Like the lot sizing problem, we may
have demand over several periods, and so we will want to hold inventory. With the new
formulation, it is easy to add a subscript for time, and add inventory variables. So we
see that variable redefinition allows us tighter formulations than before, and it also
allows us to solve models we could not before.

3.2 Problems with DP-based formulations

The lot size and cutting stock models worked well because we have good polynomial or
pseudo-polynomial time DP algorithms. When variable redefinition was applied, the
concise DP resulted in a reformulation with a concise number of variables. Martin
studied only polynomial time DPs, because they will produce a polynomial number of
variables in the IP, but his theory applies to any acyclic decision hypergraph.

For many important problems, the DP suffers from the “curse of dimensionality,”
though this curse is not as oppressive as it was with the old computers. The
corresponding LP network would also be big. For these problems, reformulating based
on the DP can result in a huge number of variables. So really hard problems stay hard.

Sometimes there is a way out: we can cleverly reduce the state space of the DP.
With the knapsack for the cutting stock problem, we saw that we can erase redundant
arcs. In the next example, the tank scheduling problem, we shall see that this reduction
can make or break the model, even though the DP is indeed dimensionally cursed.

4 The tank scheduling problem
A military tank battalion commander selects and schedules training exercises for his
four tank companies, to train the companies in a set of skills. Their exercises can be
repeated. The skills they learn haveprecedents– soldiers learn to drive a tank before
shooting, for example. There are capacity constraints which depend on the time period –
only so many tanks can get on the playing field at once before they bump into each
other. The problem is to find a schedule of exercises for each of the 4 tank companies,
to train each company fully in its required skills, within capacity, as quickly as possible.

This problem is similar to job shop scheduling, only not so tidy. Avoiding
formalities (we will point out the crucial parts), here is a simplified formulation:

TS1: minimise�
=

T

t
ttz

1

(1)

zt ÿ zrt, r = 1, …,R, t = 1, …,T, (2)

0
1 1

=−� �
= +−=

K

k

t

dtu
rkurt

k

xz , r = 1, …,R, t = 1, …,T, (3)

ri

T

t

K

k
rktrki pxq ≥��

= =1 1

, r = 1, …,R, i = 1, …, I, (4)

wt

R

r

K

k

t

dtu
rkukw Cxc

k

≤�� �
= = +−=1 1 1

, w = 1, …, W, t = 1, …,T, (5)

rktri

t

u qk
dukrrki xpxq

rkj

k
≥� �

−

= =
+−

1

1 }1|{
1,, , for { i,j: i � j}, for { l: qrlj >0}, r=1,…,R, t=1,…,T, (6)

zt, zrt, xrkt ∈ {0,1}.
Depending on the time horizonT and the number of entitiesR, there are 20,000 to

500,000 binary variables. SoTS1 is a monster.

Constraint set (4) is a multidimensional knapsack. Set (5) has the capacity
constraints. Set (6), the precedence constraints, is the bad part of this formulation. There
may bemillions of precedence constraints, since the number of these isO(I2KRT). This
“standard formulation” is intractable. However, if we drop the capacity constraints, set
(5), the problem decomposes by entityr. For one entity (say, one company of the
battalion’s four tank companies), we can use DP to find a schedule. The states of the DP
are the skills and the time period.

Now this DP is truly cursed. It is a general integer multidimensional knapsack, with
typically 3,000 variables and 25 to 30 constraints, which in general takes an exponential
amount of time to solve. However, the precedents – so bad before – greatlyreducethe
state space, because they give a partial ordering to our multidimensional knapsack.

Figure 5 is a sample DP network. (Time period states are left off for simplicity.)
Note that exercise activities A, B, and D are available immediately, but exercise C is not
available until skill 1 has reached 3. So there is a precedence from skill 1 to skill 3, and
this reduces the number of arcs and nodes in the DP. Besides precedence constraints, the
DP can easily handle other useful constraints such as time windows.

Figure 5 DP network for one entity of the tank scheduling problem

Now we have a network. Let’s reformulate the monsterTS1 in terms of the
DP. Let θk,π,ρ,t = the number of entities with skill vectorπ π π π in period t, who do
exercise activityk, resulting in skill vectorρρρρ, in periodt+dk.

TS2: minimise����
= =

θ
K

k

T

t
tktkD

1 1
,,,,

ÿ �
�ÿ , (7)

rr

K

k
sk ssS

r
allfor)(

1
0,,, =θ��

= ÿ
� , (8)

t
K

k
tk

K

k
dtk k

,allfor
1

,,,
1

1,,, �
�

��
ÿ

�ÿ ����
==

+− θ=θ , (9)

,allfor)(
1

1

1
,,, rr

K

k

dT

t
tpk ppR

k

r
=θ�� �

=

+−

=�
� (10)

w,tCc tw

K

k

t

dtu
ukwk

k

allfor,
1 , 1

,,,, ≤θ�� �
= +−=�ÿ

�ÿ , (11)

.,,,allfor,,, tkZtk �ÿ�ÿ
+∈θ (12)

Again, we have left out many tangential details, but the point is thatTS2 is network,
except for the capacity constraints, set (11). In spirit, this is very much like the cutting
stock problem – a knapsack reformulated as mostly network, with general integer
variables. Restricting the DP made this succeed.TS2 satisfies all the precedents,
because these were handled explicitly in the DP during model creation. In fact, this
model wasstill too large for a single formulation, so a specialised column generation
algorithm was used. Interestingly, entities (the tank companies) are similar or even
identical, so we can solve allR subproblems in one pass of the DP. There is a demand
node for each distinct group of entities. But this is going beyond our story.

The bounds on this model were often perfectly tight. In fact, when the LP was
solved, the resulting solution was often naturally integer. So we see that variable
redefinition tightens a formulation, and we do not need a polynomial time DP. It is
important that we have a DP that is reasonable. But what if the DP is unreasonable?

5 The travelling salesman problem
A standard formulation for the Travelling Salesman Problem is as follows:

TSP1: minimise�i�j cij xij

�i xij = 1 for all j.
�j xij = 1 for all i.
�i,j∈S xij ≤ |S| – 1 for every subsetS.
xij ∈ {0, 1} for all i, j.

There are exponentially many subsetsS, so this formulation is huge. In practice,
TSP1 is often solved with a few subtour constraints, resulting in infeasible solutions.
Then subtour constraints are added, and it is solved again. Also, solutions may be
fractional, requiring branch and bound.

But it is easy to modify the formulation to be more general. We can add a constraint
for fuel capacity by adding the constraint�i�j fij xij ≤ F. But a multi-vehicle travelling
salesman problem, even with identical trucks, requires a complete reformulation.

So how do we apply variable redefinition to the TSP? First let me say that, once we
do, we will get anaturally integer network formulationfor the TSP that can be solved in
polynomial time in the number of variables. What is the bad news? Keep reading.

The TSP can be solved by DP (Held and Karp [4]), though it has the curse of
dimensionality. Forn cities, it requires timeO(2n). Not only is this hard, but it is hard to
modify this for side constraints, e.g. fuel capacity. And it is difficult to modify for the
multi-vehicle TSP (Lawler, et al [5], p. 436). But carry on we will. The network
diagram is in Figure 6.

Now we write this as a network LP. Noteα, β, γ are sets of cities.
xα,i,β,j =1 if the car has done city setα, is at cityi, and goes to cityj. Soβ=α∪j.

TSP2: Min�α �i �j cij xα,i,β,j

�j x∅,1,β,j = 1,
�α �i xα,i,β,j – �γ �k xβ,j,γ,k = 0 for each setβ and cityj.
xα,i,β,j ³0 for all α, i, j.

TSP2 is clearly a naturally integral network LP. Big networks can be solved quickly.
Unfortunately, big comes very soon. Forn cities, the number of variables is

() .1
1

1
�

−

=
�
�
��

�
�+−

n

i
i
nini For 20 cities, this is about 5 million. For 40 cities, this is about 1013.

A

ab,B

ac,C

ad,D

ae,E

abc,C

abd,D

abe,E

abc,B

acd,D

ace,E

abd,B

acd,C

ade,E

abe,B

ace,C

ade,D

abcd,D

abce,E

abcd,C

abde,E

abce,C

abde,D

abcd,B

acde,E

abce,B

acde,D

abde,B

acde,C

abcde,E

abcde,D

abcde,C

abcde,B

abcde,A

Modifying TSP2 for more general problems is done easily. For example, fuel
capacity is trivial to add to the model:�α �i �j fij xα,i,β,j ≤ F. More interestingly, we can
easily modify the formulation for the multi-vehicle TSP:xα,i,β,j = number of cars that
have done city setα, are at cityi, then go to cityj, andyα,i = number of cars that have
done city setα, are at cityi, then go to city 1.

MVTSP: Min �α �i �j cij xα,i,β,j + �α �i ci1yα,i

�j x∅,1,β,j = k, the supply of vehicles.
�α �i xα,i,β,j – �γ �k xβ,j,γ,k – yβ,j= 0 for each setβ and cityj.
�α �i xα,i,β,j = 1 for each cityj, the demand for vehicles.
xα,i,β,j , yα,i ∈Z+ for all α, i, j.

This easy to solve, if you can create it! Like the knapsack and the tank scheduling
problems, we can reduce the state space, but we leave that for another paper.

5 Implications for dynamic programmers and integer programs

5.1 Implications for dynamic programmers

Your DP is probably not as big as that for the TSP, which is rather like a worst case. So
you can probably add a bit of code to put your DP into CPlex or LINDO. Think of the
DP as a matrix generator for a larger model. Here is pseudo-code that shows how. The
parts in bold are the parts added to the DP in order to do the matrix generation.

CreateNode (∅,1);
appendConstraintToCplex (1);
For node i = 1 to n:
{ For decisio n x = 1 to X:

If arcMakesSense (node i, x)
{ Node j = CreateNode (i, x);

appendConstraintToCplex (j);
appendVariableToCplex (i, j);
n = n + 1;

} }

Figure 6 The DP network for a 5-city TSP.

After this, the network is stored in CPlex as an LP formulation. We are not solving a
DP so much as we are finding all the nodes and arcs. It is not necessary to do primal
retrieval. Now we can use DP to solve new problems by adding side constraints. The LP
relaxation will be very tight, so they will solve quickly. Furthermore, as Martin, Rardin,
and Campbell [7] point out, we can use LP output for sensitivity analysis.

5.2 Implications for integer programs

Consider whether your difficult formulation can be recast with DP. PhD students are
cranking out by the bushel column generation algorithms with DP subproblems. Many
of these would benefit from the use of variable redefinition.

The issues in reformulating are to be sure solutions are feasible to the original
problem, and to be sure we have not cut off the optimal solution. Martin [6] showed
how to do this with a linear transformation: the user must find a linear transformation
from the old model to the new good model. Unfortunately, this makes reformulating as
hard as writing a theorem, but there is a proof the formulation is correct.

Generally, users formulate models intuitively, and in my experience, this is
satisfactory for the use of variable redefinition. Just make sure you’ve got it formulated
properly! Keep the old formulation around awhile for validation purposes.

Martin, Rardin and Campbell [7] studied LP reformulations based on polynomial
time DPs. However, if we can improve the DP for an exponential DP, we may be able to
use variable redefinition more generally. We have seen several examples of variable
redefinition. This article contributed an extension to Dyckhoff’s cutting stock problem
as well as an amusing formulation for the travelling salesman problem. Hopefully, the
reader has a better understanding of the purpose and value of variable redefinition.

References
[1] Dyckhoff, Harald, “A New Linear Programming Approach to the Cutting Stock
Problem,”Operations Research, v.29, no. 6, Nov-Dec. 1981.

[2] Eppen, Gary, and R.Kipp Martin, “Solving Multi-Item Capacitated Lot-Sizing
Problems Using Variable Redefinition,”Operations Research, v35, n6, Nov-Dec 1987.

[3] Gilmore, P.C. and R.E. Gomory, “A Linear Programming Approach to the Cutting
Stock Problem,”Operations Research, v9, 1961, pp. 849-859.

[4] Held, M., and R.M. Karp, “A dynamic programming approach to sequencing
problems,”SIAM J. Appl. Math, v10, pp. 196-210.

[5] Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, D.B Shmoys,The Traveling
Salesman Problem, John Wiley & Sons, Inc., Chichester, Great Britain, 1985.

[6] Martin, R. Kipp “Generating Alternative Mixed-Integer Programming Models Using
Variable Redefinition,”Operations Research, v35, n6, Nov-Dec 1987.

[7] Martin, R.Kipp, Ronald L. Rardin, Brian A. Campbell, “Polyhedral Characterization
of Discrete Dynamic Programming,”Operations Res., v38, n1, Jan-Feb 1990.

[8] Raffensperger, John F.,Measuring and Improving the Readiness of Emergency
Organizations, PhD dissertation, University of Chicago, 1997.

[9] Schrage, Linus,LINDO User’s Manual, LINDO Systems, Inc., Chicago, IL.

